反褶积
盲反褶积
反问题
正规化(语言学)
卷积(计算机科学)
先验与后验
算法
光传递函数
反向
计算机科学
显微镜
噪音(视频)
传递函数
分辨率(逻辑)
点扩散函数
光学
图像(数学)
数学
物理
计算机视觉
人工智能
数学分析
哲学
几何学
电气工程
认识论
人工神经网络
工程类
作者
Yueshu Xu,Yile Sun,Hanmeng Wu,Wen Ming Cao,Ling Bai,Siwei Tao,Zonghan Tian,Yudong Cui,Xiang Hao,Cuifang Kuang,Xu Liu
标识
DOI:10.1016/j.optlastec.2023.110119
摘要
Due to the ill-posedness of the inverse deconvolution for structured illumination microscopy (SIM), the results of Richardson–Lucy algorithm are not ideal in the presence of noise. Here, we propose an accelerated linearized alternating direction method of multipliers (AL-ADMM) method for solving the regularized SIM deconvolution problem. A modification of the generalized inverse is introduced to overcome the large condition number of the convolution operator. This study shows that regularization or priori knowledge can effectively suppress noise and improve the resolution and contrast of the recovered SIM image. Simulations and experiments demonstrate that the proposed algorithm can efficiently extract higher-frequency information beyond the microscope optical transfer function for the corrupted SIM images to achieve computational super-resolution (SR) without hardware modifications.
科研通智能强力驱动
Strongly Powered by AbleSci AI