A federated and explainable approach for insider threat detection in IoT

内部威胁 知情人 计算机科学 计算机安全 过程(计算) 可信赖性 物联网 互联网隐私 政治学 法学 操作系统
作者
Mohammad Amiri-Zarandi,Hadis Karimipour,Rozita Dara
出处
期刊:Internet of things [Elsevier]
卷期号:24: 100965-100965 被引量:4
标识
DOI:10.1016/j.iot.2023.100965
摘要

An insider threat is a malicious action launched by authorized personnel inside the organization. Since insider actions may only leave a small digital footprint in the system, it is considered a major cybersecurity challenge in different applications. Along with the rapid growth of the Internet of Things (IoT) and the extensive attack surface in this technology, many concerns have been raised regarding the potential insider threats in IoT environments. Several studies have been conducted on Machine Learning (ML)-based insider threat detection solutions which are focused on the models' performance while the trustability of these models is neglected. Trustworthy Learning refers to a new trend in ML that focuses on ways to ensure that the data collection and data analysis procedures in ML techniques follow ethical applications and are trustable to human users. This approach enforces the acceptance and successful adoption of ML-based solutions. This study aims to propose an improved trustworthy insider threat detection method that ensures two of the trustworthy learning requirements: Privacy and Explainability. The proposed solution protects the privacy of the utilized data and is capable of explaining why certain behaviors are detected as a threat. The proposed solution also leverages data collaboration between different data owners to increase the volume of data used in the training process and enhance the performance of the ML model. Experimental results show the proposed solution outperforms the learning models trained by individual data holders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
还有吗发布了新的文献求助30
1秒前
1秒前
SciGPT应助abiu采纳,获得10
3秒前
汉堡包应助迷路的曼梅采纳,获得10
3秒前
4秒前
Lucas应助瓦力文采纳,获得10
4秒前
5秒前
6秒前
科研通AI2S应助王大人很白采纳,获得10
6秒前
pixxo完成签到,获得积分20
7秒前
Bonnie发布了新的文献求助10
7秒前
tcmlida完成签到,获得积分10
8秒前
8秒前
zyc1111111发布了新的文献求助60
9秒前
晚风做酒完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
坚强的翠霜完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
呆瓜发布了新的文献求助10
11秒前
万能图书馆应助小明采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
两仪完成签到,获得积分10
12秒前
ysta发布了新的文献求助10
12秒前
13秒前
huqing完成签到,获得积分10
13秒前
满满啊完成签到,获得积分10
14秒前
Yikai-Zhou发布了新的文献求助10
14秒前
两仪发布了新的文献求助10
14秒前
ZHAO发布了新的文献求助10
14秒前
未完发布了新的文献求助10
15秒前
勤奋大地发布了新的文献求助10
16秒前
zy发布了新的文献求助10
16秒前
16秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129605
求助须知:如何正确求助?哪些是违规求助? 2780380
关于积分的说明 7747647
捐赠科研通 2435666
什么是DOI,文献DOI怎么找? 1294216
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570