Multi-Hop Knowledge Graph Reasoning in Few-Shot Scenarios

计算机科学 概化理论 人工智能 图形 理论计算机科学 心理学 发展心理学
作者
Shangfei Zheng,Wei Chen,Weiqing Wang,Pengpeng Zhao,Hongzhi Yin,Lei Zhao
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (4): 1713-1727 被引量:4
标识
DOI:10.1109/tkde.2023.3304665
摘要

Reinforcement learning (RL)-based multi-hop reasoning has become an interpretable way for knowledge graph reasoning owing to its persuasive explanations for the predicted results, but the reasoning performance of these methods drops significantly over few-shot relations (only contain few triplets). To address this problem, recent studies introduce meta-learning into RL-based reasoning methods. However, the performance of these studies is still limited due to the following points: (1) the overall reasoning accuracy is impaired due to the low reasoning accuracies over some hard relations; (2) the reasoning process becomes laborious and ineffective owing to the existence of noisy data; (3) the generalizability is negatively affected due to the lack of knowledge-sharing. To tackle these challenges, we propose a novel model HMLS consisting of two modules HHML ( H ierarchical H ardness-aware M eta-reinforcement L earning) and HHS ( H ierarchical H ardness-aware S ampling). Specifically, HHML contains the following two components: (1) a hardness-aware RL conducts multi-hop reasoning by training hardness-aware batches and reducing noise; (2) a knowledge-sharing meta-learning adapts to few-shot relations by exploiting common features in the hierarchical relation structure. The other module HHS generates hardness-aware batches from relation and relation-cluster levels. The experimental results demonstrate that this work notably outperforms the state-of-the-art approaches in few-shot scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助Rita采纳,获得10
1秒前
王院士发布了新的文献求助10
1秒前
蓝莓酱发布了新的文献求助10
2秒前
灵儿完成签到,获得积分10
3秒前
简让完成签到 ,获得积分10
6秒前
7秒前
王院士完成签到,获得积分10
8秒前
wds2023发布了新的文献求助20
9秒前
勤奋静曼发布了新的文献求助10
10秒前
14秒前
14秒前
归尘应助LHL采纳,获得10
14秒前
zxcharm给zxcharm的求助进行了留言
16秒前
ll发布了新的文献求助10
20秒前
冰魂应助笠柚采纳,获得10
21秒前
23秒前
underunder完成签到,获得积分10
24秒前
冰魂应助东郭一斩采纳,获得20
25秒前
25秒前
26秒前
踏实晓啸发布了新的文献求助30
27秒前
27秒前
simon0208发布了新的文献求助30
29秒前
LY完成签到,获得积分10
29秒前
ding应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
hlh应助科研通管家采纳,获得10
31秒前
orixero应助科研通管家采纳,获得10
31秒前
彭于晏应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
31秒前
wangdong应助科研通管家采纳,获得10
31秒前
lwl666应助科研通管家采纳,获得10
31秒前
MM应助科研通管家采纳,获得10
31秒前
Akim应助科研通管家采纳,获得10
31秒前
31秒前
32秒前
倪倪发布了新的文献求助10
33秒前
勤奋静曼发布了新的文献求助10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775623
求助须知:如何正确求助?哪些是违规求助? 3321235
关于积分的说明 10204297
捐赠科研通 3036094
什么是DOI,文献DOI怎么找? 1665997
邀请新用户注册赠送积分活动 797244
科研通“疑难数据库(出版商)”最低求助积分说明 757766