Artificial Intelligence in Human Resource Management: Recent Trends and Research Agenda

知识管理 背景(考古学) 人工智能 入职培训 人力资源管理 大数据 心理学 计算机科学 数据科学 工程类 社会心理学 古生物学 生物 操作系统
作者
Akansha Mer
出处
期刊:Contemporary studies in economic and financial analysis 卷期号:: 31-56 被引量:17
标识
DOI:10.1108/s1569-37592023000111b003
摘要

The COVID-19 pandemic ushered in multiple challenges for employees, which led to employee turnover, disengagement at work, employees' mental health issues, etc. The study tries to elucidate how artificial intelligence (AI) herald great promise in human resource management in decreasing cost, attrition level and enhancing productivity. Considering the dearth of studies on recent trends in human resource management (HRM) in the context of AI, the study elucidates the role of AI in facilitating seamless onboarding, diversity and inclusion (D&I), work engagement, emotional intelligence and employees' mental health. Thus, a conceptual model of recent trends in HRM in the context of AI and its organisational outcomes is proposed. A systematic review and meta-synthesis method are undertaken. A systematic literature review assisted in critically analysing, synthesising, and mapping the extant literature by identifying the broad themes. The findings of the study suggest that using natural language processing (NLP) and robots has eased the onboarding process. D&I is promoted using data analytics, big data, machine learning, predictive analysis and NLP. Furthermore, NLP and data analytics have proved to be highly effective in engaging employees. Emotional Intelligence is applied through AI simulation and intelligent robots. On the other hand, chatbots, employee pulse surveys, wearable technology, and intelligent robots have paved way for employees' mental health. The study also reveals that using AI in HRM leads to enhanced organisational performance, reduced cost and decreased intention to quit the organisation. Thus, AI in HRM provides a competitive edge to organisations by enhancing the performance of the employees.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
someone完成签到,获得积分10
刚刚
AAA发布了新的文献求助30
1秒前
小鱼儿完成签到,获得积分10
1秒前
昏睡的蟠桃应助小芳子采纳,获得150
1秒前
song完成签到 ,获得积分10
2秒前
一二完成签到,获得积分10
2秒前
2秒前
3秒前
ldz完成签到,获得积分10
3秒前
仁爱柠檬完成签到,获得积分10
3秒前
L77完成签到,获得积分0
3秒前
4秒前
计算机小咖完成签到,获得积分10
6秒前
wintersss完成签到,获得积分10
6秒前
6秒前
传奇3应助bai123采纳,获得10
7秒前
潜山耕之完成签到,获得积分10
8秒前
ZhangSH完成签到,获得积分10
8秒前
8秒前
科研通AI5应助闪电采纳,获得10
8秒前
铎幸福完成签到,获得积分10
9秒前
9秒前
mmm完成签到,获得积分10
9秒前
9秒前
木小夕发布了新的文献求助10
9秒前
呼呼呼完成签到,获得积分10
9秒前
芽衣发布了新的文献求助10
10秒前
YUNWU发布了新的文献求助30
10秒前
10秒前
10秒前
10秒前
青子完成签到,获得积分10
10秒前
11秒前
隐形曼青应助露亮采纳,获得10
11秒前
11秒前
完美世界应助towerman采纳,获得10
11秒前
12秒前
机灵柚子应助xiaoxi采纳,获得20
12秒前
科研小白发布了新的文献求助10
13秒前
硬嗑苹果的花生完成签到,获得积分10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774155
求助须知:如何正确求助?哪些是违规求助? 3319812
关于积分的说明 10197154
捐赠科研通 3034404
什么是DOI,文献DOI怎么找? 1665015
邀请新用户注册赠送积分活动 796485
科研通“疑难数据库(出版商)”最低求助积分说明 757510