A high‐resolution cone beam computed tomography (HRCBCT) reconstruction framework for CBCT‐guided online adaptive therapy

迭代重建 条纹 计算机科学 计算机视觉 锥束ct 图像质量 人工智能 图像分辨率 影像引导放射治疗 正规化(语言学) 算法 医学影像学 计算机断层摄影术 图像(数学) 光学 放射科 医学 物理
作者
Justin C. Park,Bongyong Song,Xiaoying Liang,Bo Lü,Jun Tan,Alessio Parisi,Janet M. Denbeigh,S Yaddanapudi,Choi ByongSu,Jin Sung Kim,Keith M. Furutani,Chris Beltran
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6490-6501 被引量:1
标识
DOI:10.1002/mp.16734
摘要

Abstract Background Kilo‐voltage cone‐beam computed tomography (CBCT) is a prevalent modality used for adaptive radiotherapy (ART) due to its compatibility with linear accelerators and ability to provide online imaging. However, the widely‐used Feldkamp‐Davis‐Kress (FDK) reconstruction algorithm has several limitations, including potential streak aliasing artifacts and elevated noise levels. Iterative reconstruction (IR) techniques, such as total variation (TV) minimization, dictionary‐based methods, and prior information‐based methods, have emerged as viable solutions to address these limitations and improve the quality and applicability of CBCT in ART. Purpose One of the primary challenges in IR‐based techniques is finding the right balance between minimizing image noise and preserving image resolution. To overcome this challenge, we have developed a new reconstruction technique called high‐resolution CBCT (HRCBCT) that specifically focuses on improving image resolution while reducing noise levels. Methods The HRCBCT reconstruction technique builds upon the conventional IR approach, incorporating three components: the data fidelity term, the resolution preservation term, and the regularization term. The data fidelity term ensures alignment between reconstructed values and measured projection data, while the resolution preservation term exploits the high resolution of the initial Feldkamp‐Davis‐Kress (FDK) algorithm. The regularization term mitigates noise during the IR process. To enhance convergence and resolution at each iterative stage, we applied Iterative Filtered Backprojection (IFBP) to the data fidelity minimization process. Results We evaluated the performance of the proposed HRCBCT algorithm using data from two physical phantoms and one head and neck patient. The HRCBCT algorithm outperformed all four different algorithms; FDK, Iterative Filtered Back Projection (IFBP), Compressed Sensing based Iterative Reconstruction (CSIR), and Prior Image Constrained Compressed Sensing (PICCS) methods in terms of resolution and noise reduction for all data sets. Line profiles across three line pairs of resolution revealed that the HRCBCT algorithm delivered the highest distinguishable line pairs compared to the other algorithms. Similarly, the Modulation Transfer Function (MTF) measurements, obtained from the tungsten wire insert on the CatPhan 600 physical phantom, showed a significant improvement with HRCBCT over traditional algorithms. Conclusion The proposed HRCBCT algorithm offers a promising solution for enhancing CBCT image quality in adaptive radiotherapy settings. By addressing the challenges inherent in traditional IR methods, the algorithm delivers high‐definition CBCT images with improved resolution and reduced noise throughout each iterative step. Implementing the HR CBCT algorithm could significantly impact the accuracy of treatment planning during online adaptive therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助l11x29采纳,获得10
刚刚
刚刚
老詹头发布了新的文献求助10
刚刚
思源应助叫滚滚采纳,获得10
1秒前
2秒前
刘歌完成签到 ,获得积分10
2秒前
阿巡完成签到,获得积分10
2秒前
Chen完成签到,获得积分10
4秒前
LSH970829发布了新的文献求助10
4秒前
哈哈哈完成签到 ,获得积分10
5秒前
汤姆完成签到,获得积分10
5秒前
7秒前
7秒前
翠翠完成签到,获得积分10
8秒前
8秒前
LSH970829完成签到,获得积分10
9秒前
Lyg完成签到,获得积分20
10秒前
坚强的樱发布了新的文献求助10
10秒前
baodingning完成签到,获得积分10
11秒前
11秒前
公茂源发布了新的文献求助30
11秒前
热爱完成签到,获得积分10
12秒前
13秒前
叫滚滚发布了新的文献求助10
14秒前
星瑆心完成签到,获得积分10
14秒前
啦啦啦啦啦完成签到,获得积分10
15秒前
Lyg发布了新的文献求助10
15秒前
Dksido完成签到,获得积分10
16秒前
兰博基尼奥完成签到,获得积分10
16秒前
热情芷荷发布了新的文献求助10
18秒前
random完成签到,获得积分10
19秒前
19秒前
果果瑞宁完成签到,获得积分10
19秒前
20秒前
机智小虾米完成签到,获得积分20
20秒前
goldenfleece完成签到,获得积分10
21秒前
科研通AI2S应助学者采纳,获得10
21秒前
小杨完成签到,获得积分10
22秒前
sutharsons应助科研通管家采纳,获得30
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808