已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A high‐resolution cone beam computed tomography (HRCBCT) reconstruction framework for CBCT‐guided online adaptive therapy

迭代重建 条纹 计算机科学 计算机视觉 锥束ct 图像质量 人工智能 图像分辨率 影像引导放射治疗 正规化(语言学) 算法 医学影像学 计算机断层摄影术 图像(数学) 光学 放射科 医学 物理
作者
Justin C. Park,Bongyong Song,Xiaoying Liang,Bo Lü,Jun Tan,Alessio Parisi,Janet M. Denbeigh,S Yaddanapudi,Choi ByongSu,Jin Sung Kim,Keith M. Furutani,Chris Beltran
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6490-6501 被引量:1
标识
DOI:10.1002/mp.16734
摘要

Abstract Background Kilo‐voltage cone‐beam computed tomography (CBCT) is a prevalent modality used for adaptive radiotherapy (ART) due to its compatibility with linear accelerators and ability to provide online imaging. However, the widely‐used Feldkamp‐Davis‐Kress (FDK) reconstruction algorithm has several limitations, including potential streak aliasing artifacts and elevated noise levels. Iterative reconstruction (IR) techniques, such as total variation (TV) minimization, dictionary‐based methods, and prior information‐based methods, have emerged as viable solutions to address these limitations and improve the quality and applicability of CBCT in ART. Purpose One of the primary challenges in IR‐based techniques is finding the right balance between minimizing image noise and preserving image resolution. To overcome this challenge, we have developed a new reconstruction technique called high‐resolution CBCT (HRCBCT) that specifically focuses on improving image resolution while reducing noise levels. Methods The HRCBCT reconstruction technique builds upon the conventional IR approach, incorporating three components: the data fidelity term, the resolution preservation term, and the regularization term. The data fidelity term ensures alignment between reconstructed values and measured projection data, while the resolution preservation term exploits the high resolution of the initial Feldkamp‐Davis‐Kress (FDK) algorithm. The regularization term mitigates noise during the IR process. To enhance convergence and resolution at each iterative stage, we applied Iterative Filtered Backprojection (IFBP) to the data fidelity minimization process. Results We evaluated the performance of the proposed HRCBCT algorithm using data from two physical phantoms and one head and neck patient. The HRCBCT algorithm outperformed all four different algorithms; FDK, Iterative Filtered Back Projection (IFBP), Compressed Sensing based Iterative Reconstruction (CSIR), and Prior Image Constrained Compressed Sensing (PICCS) methods in terms of resolution and noise reduction for all data sets. Line profiles across three line pairs of resolution revealed that the HRCBCT algorithm delivered the highest distinguishable line pairs compared to the other algorithms. Similarly, the Modulation Transfer Function (MTF) measurements, obtained from the tungsten wire insert on the CatPhan 600 physical phantom, showed a significant improvement with HRCBCT over traditional algorithms. Conclusion The proposed HRCBCT algorithm offers a promising solution for enhancing CBCT image quality in adaptive radiotherapy settings. By addressing the challenges inherent in traditional IR methods, the algorithm delivers high‐definition CBCT images with improved resolution and reduced noise throughout each iterative step. Implementing the HR CBCT algorithm could significantly impact the accuracy of treatment planning during online adaptive therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pay发布了新的文献求助10
2秒前
3秒前
细心怀亦完成签到 ,获得积分10
7秒前
sssyyy发布了新的文献求助10
8秒前
Guts发布了新的文献求助10
8秒前
13秒前
zl13332完成签到 ,获得积分10
15秒前
shy完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
111发布了新的文献求助10
20秒前
20秒前
23秒前
24秒前
马宁婧完成签到 ,获得积分10
27秒前
柠木完成签到 ,获得积分10
29秒前
Dr.c发布了新的文献求助10
31秒前
32秒前
小明完成签到,获得积分10
33秒前
Airsjz发布了新的文献求助10
38秒前
38秒前
Jemma完成签到 ,获得积分10
39秒前
轨迹应助小彬采纳,获得10
40秒前
Guts发布了新的文献求助10
41秒前
42秒前
DD发布了新的文献求助10
42秒前
zp19877891完成签到,获得积分10
43秒前
毛舒敏完成签到 ,获得积分10
45秒前
Aris发布了新的文献求助30
46秒前
不许动完成签到 ,获得积分10
46秒前
爆米花应助研究牲采纳,获得10
49秒前
小刘完成签到,获得积分10
50秒前
科研通AI6.1应助Guts采纳,获得10
51秒前
武愿完成签到 ,获得积分10
51秒前
51秒前
鬼笔环肽完成签到 ,获得积分10
52秒前
53秒前
54秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754502
求助须知:如何正确求助?哪些是违规求助? 5487138
关于积分的说明 15380163
捐赠科研通 4893049
什么是DOI,文献DOI怎么找? 2631710
邀请新用户注册赠送积分活动 1579665
关于科研通互助平台的介绍 1535387