A high‐resolution cone beam computed tomography (HRCBCT) reconstruction framework for CBCT‐guided online adaptive therapy

迭代重建 条纹 计算机科学 计算机视觉 锥束ct 图像质量 人工智能 图像分辨率 影像引导放射治疗 正规化(语言学) 算法 医学影像学 计算机断层摄影术 图像(数学) 光学 放射科 医学 物理
作者
Justin C. Park,Bongyong Song,Xiaoying Liang,Bo Lü,Jun Tan,Alessio Parisi,Janet M. Denbeigh,S Yaddanapudi,Choi ByongSu,Jin Sung Kim,Keith M. Furutani,Chris Beltran
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6490-6501 被引量:1
标识
DOI:10.1002/mp.16734
摘要

Abstract Background Kilo‐voltage cone‐beam computed tomography (CBCT) is a prevalent modality used for adaptive radiotherapy (ART) due to its compatibility with linear accelerators and ability to provide online imaging. However, the widely‐used Feldkamp‐Davis‐Kress (FDK) reconstruction algorithm has several limitations, including potential streak aliasing artifacts and elevated noise levels. Iterative reconstruction (IR) techniques, such as total variation (TV) minimization, dictionary‐based methods, and prior information‐based methods, have emerged as viable solutions to address these limitations and improve the quality and applicability of CBCT in ART. Purpose One of the primary challenges in IR‐based techniques is finding the right balance between minimizing image noise and preserving image resolution. To overcome this challenge, we have developed a new reconstruction technique called high‐resolution CBCT (HRCBCT) that specifically focuses on improving image resolution while reducing noise levels. Methods The HRCBCT reconstruction technique builds upon the conventional IR approach, incorporating three components: the data fidelity term, the resolution preservation term, and the regularization term. The data fidelity term ensures alignment between reconstructed values and measured projection data, while the resolution preservation term exploits the high resolution of the initial Feldkamp‐Davis‐Kress (FDK) algorithm. The regularization term mitigates noise during the IR process. To enhance convergence and resolution at each iterative stage, we applied Iterative Filtered Backprojection (IFBP) to the data fidelity minimization process. Results We evaluated the performance of the proposed HRCBCT algorithm using data from two physical phantoms and one head and neck patient. The HRCBCT algorithm outperformed all four different algorithms; FDK, Iterative Filtered Back Projection (IFBP), Compressed Sensing based Iterative Reconstruction (CSIR), and Prior Image Constrained Compressed Sensing (PICCS) methods in terms of resolution and noise reduction for all data sets. Line profiles across three line pairs of resolution revealed that the HRCBCT algorithm delivered the highest distinguishable line pairs compared to the other algorithms. Similarly, the Modulation Transfer Function (MTF) measurements, obtained from the tungsten wire insert on the CatPhan 600 physical phantom, showed a significant improvement with HRCBCT over traditional algorithms. Conclusion The proposed HRCBCT algorithm offers a promising solution for enhancing CBCT image quality in adaptive radiotherapy settings. By addressing the challenges inherent in traditional IR methods, the algorithm delivers high‐definition CBCT images with improved resolution and reduced noise throughout each iterative step. Implementing the HR CBCT algorithm could significantly impact the accuracy of treatment planning during online adaptive therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yixiao完成签到,获得积分10
刚刚
学术蜗牛发布了新的文献求助10
刚刚
trial完成签到 ,获得积分10
1秒前
1秒前
Xiang发布了新的文献求助10
2秒前
共享精神应助huhu采纳,获得10
2秒前
立追拓完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
思源应助uu采纳,获得10
4秒前
杨qian完成签到,获得积分10
4秒前
Joy发布了新的文献求助10
5秒前
nsk发布了新的文献求助10
5秒前
5秒前
万能图书馆应助包容诗云采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
tianzml0应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得30
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
拼搏小丸子完成签到 ,获得积分10
6秒前
6秒前
LCW07发布了新的文献求助10
6秒前
6秒前
tianzml0应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
iNk应助科研通管家采纳,获得10
6秒前
jyx应助科研通管家采纳,获得10
6秒前
跳跃寄柔发布了新的文献求助10
6秒前
6秒前
田様应助科研通管家采纳,获得10
6秒前
王小兵发布了新的文献求助30
7秒前
科研通AI2S应助鲤鱼小熊猫采纳,获得10
7秒前
酷波er应助Xiang采纳,获得10
7秒前
杨qian发布了新的文献求助10
7秒前
李爱国应助点墨采纳,获得10
8秒前
Snow发布了新的文献求助10
9秒前
9秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168110
求助须知:如何正确求助?哪些是违规求助? 2819468
关于积分的说明 7926640
捐赠科研通 2479343
什么是DOI,文献DOI怎么找? 1320739
科研通“疑难数据库(出版商)”最低求助积分说明 632898
版权声明 602458