A high‐resolution cone beam computed tomography (HRCBCT) reconstruction framework for CBCT‐guided online adaptive therapy

迭代重建 条纹 计算机科学 计算机视觉 锥束ct 图像质量 人工智能 图像分辨率 影像引导放射治疗 正规化(语言学) 算法 医学影像学 计算机断层摄影术 图像(数学) 光学 放射科 医学 物理
作者
Justin C. Park,Bongyong Song,Xiaoying Liang,Bo Lü,Jun Tan,Alessio Parisi,Janet M. Denbeigh,S Yaddanapudi,Choi ByongSu,Jin Sung Kim,Keith M. Furutani,Chris Beltran
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6490-6501 被引量:1
标识
DOI:10.1002/mp.16734
摘要

Abstract Background Kilo‐voltage cone‐beam computed tomography (CBCT) is a prevalent modality used for adaptive radiotherapy (ART) due to its compatibility with linear accelerators and ability to provide online imaging. However, the widely‐used Feldkamp‐Davis‐Kress (FDK) reconstruction algorithm has several limitations, including potential streak aliasing artifacts and elevated noise levels. Iterative reconstruction (IR) techniques, such as total variation (TV) minimization, dictionary‐based methods, and prior information‐based methods, have emerged as viable solutions to address these limitations and improve the quality and applicability of CBCT in ART. Purpose One of the primary challenges in IR‐based techniques is finding the right balance between minimizing image noise and preserving image resolution. To overcome this challenge, we have developed a new reconstruction technique called high‐resolution CBCT (HRCBCT) that specifically focuses on improving image resolution while reducing noise levels. Methods The HRCBCT reconstruction technique builds upon the conventional IR approach, incorporating three components: the data fidelity term, the resolution preservation term, and the regularization term. The data fidelity term ensures alignment between reconstructed values and measured projection data, while the resolution preservation term exploits the high resolution of the initial Feldkamp‐Davis‐Kress (FDK) algorithm. The regularization term mitigates noise during the IR process. To enhance convergence and resolution at each iterative stage, we applied Iterative Filtered Backprojection (IFBP) to the data fidelity minimization process. Results We evaluated the performance of the proposed HRCBCT algorithm using data from two physical phantoms and one head and neck patient. The HRCBCT algorithm outperformed all four different algorithms; FDK, Iterative Filtered Back Projection (IFBP), Compressed Sensing based Iterative Reconstruction (CSIR), and Prior Image Constrained Compressed Sensing (PICCS) methods in terms of resolution and noise reduction for all data sets. Line profiles across three line pairs of resolution revealed that the HRCBCT algorithm delivered the highest distinguishable line pairs compared to the other algorithms. Similarly, the Modulation Transfer Function (MTF) measurements, obtained from the tungsten wire insert on the CatPhan 600 physical phantom, showed a significant improvement with HRCBCT over traditional algorithms. Conclusion The proposed HRCBCT algorithm offers a promising solution for enhancing CBCT image quality in adaptive radiotherapy settings. By addressing the challenges inherent in traditional IR methods, the algorithm delivers high‐definition CBCT images with improved resolution and reduced noise throughout each iterative step. Implementing the HR CBCT algorithm could significantly impact the accuracy of treatment planning during online adaptive therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大模型应助春风不语采纳,获得10
1秒前
阿雅发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助30
2秒前
爆米花应助淡然惜雪采纳,获得10
3秒前
科研通AI6应助ZhijunXiang采纳,获得30
3秒前
3秒前
3秒前
踏雪发布了新的文献求助10
3秒前
坚定访梦完成签到,获得积分20
3秒前
4秒前
科研通AI5应助chen采纳,获得10
4秒前
5秒前
5秒前
于儒琛完成签到,获得积分10
5秒前
故城完成签到 ,获得积分10
6秒前
yimi完成签到,获得积分10
6秒前
完美世界应助吕君采纳,获得30
6秒前
6秒前
Hello应助April_nd采纳,获得10
7秒前
鲸鱼发布了新的文献求助30
7秒前
7秒前
8秒前
Tsing完成签到 ,获得积分10
9秒前
yimi发布了新的文献求助10
9秒前
9秒前
9秒前
亮亮完成签到,获得积分10
9秒前
sunrase发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
yuan发布了新的文献求助10
10秒前
WSYang完成签到,获得积分10
10秒前
10秒前
完美世界应助1234567890采纳,获得10
11秒前
11秒前
11秒前
爱吃烤肉的兔子完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871