A high‐resolution cone beam computed tomography (HRCBCT) reconstruction framework for CBCT‐guided online adaptive therapy

迭代重建 条纹 计算机科学 计算机视觉 锥束ct 图像质量 人工智能 图像分辨率 影像引导放射治疗 正规化(语言学) 算法 医学影像学 计算机断层摄影术 图像(数学) 光学 放射科 医学 物理
作者
Justin C. Park,Bongyong Song,Xiaoying Liang,Bo Lü,Jun Tan,Alessio Parisi,Janet M. Denbeigh,S Yaddanapudi,Choi ByongSu,Jin Sung Kim,Keith M. Furutani,Chris Beltran
出处
期刊:Medical Physics [Wiley]
卷期号:50 (10): 6490-6501 被引量:1
标识
DOI:10.1002/mp.16734
摘要

Abstract Background Kilo‐voltage cone‐beam computed tomography (CBCT) is a prevalent modality used for adaptive radiotherapy (ART) due to its compatibility with linear accelerators and ability to provide online imaging. However, the widely‐used Feldkamp‐Davis‐Kress (FDK) reconstruction algorithm has several limitations, including potential streak aliasing artifacts and elevated noise levels. Iterative reconstruction (IR) techniques, such as total variation (TV) minimization, dictionary‐based methods, and prior information‐based methods, have emerged as viable solutions to address these limitations and improve the quality and applicability of CBCT in ART. Purpose One of the primary challenges in IR‐based techniques is finding the right balance between minimizing image noise and preserving image resolution. To overcome this challenge, we have developed a new reconstruction technique called high‐resolution CBCT (HRCBCT) that specifically focuses on improving image resolution while reducing noise levels. Methods The HRCBCT reconstruction technique builds upon the conventional IR approach, incorporating three components: the data fidelity term, the resolution preservation term, and the regularization term. The data fidelity term ensures alignment between reconstructed values and measured projection data, while the resolution preservation term exploits the high resolution of the initial Feldkamp‐Davis‐Kress (FDK) algorithm. The regularization term mitigates noise during the IR process. To enhance convergence and resolution at each iterative stage, we applied Iterative Filtered Backprojection (IFBP) to the data fidelity minimization process. Results We evaluated the performance of the proposed HRCBCT algorithm using data from two physical phantoms and one head and neck patient. The HRCBCT algorithm outperformed all four different algorithms; FDK, Iterative Filtered Back Projection (IFBP), Compressed Sensing based Iterative Reconstruction (CSIR), and Prior Image Constrained Compressed Sensing (PICCS) methods in terms of resolution and noise reduction for all data sets. Line profiles across three line pairs of resolution revealed that the HRCBCT algorithm delivered the highest distinguishable line pairs compared to the other algorithms. Similarly, the Modulation Transfer Function (MTF) measurements, obtained from the tungsten wire insert on the CatPhan 600 physical phantom, showed a significant improvement with HRCBCT over traditional algorithms. Conclusion The proposed HRCBCT algorithm offers a promising solution for enhancing CBCT image quality in adaptive radiotherapy settings. By addressing the challenges inherent in traditional IR methods, the algorithm delivers high‐definition CBCT images with improved resolution and reduced noise throughout each iterative step. Implementing the HR CBCT algorithm could significantly impact the accuracy of treatment planning during online adaptive therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑化小狗完成签到,获得积分10
1秒前
1秒前
ETJ完成签到,获得积分10
1秒前
朱朱朱完成签到,获得积分10
2秒前
Hello应助陶醉凝丝采纳,获得10
2秒前
11发布了新的文献求助10
2秒前
shyunk发布了新的文献求助10
2秒前
黑化小狗发布了新的文献求助10
3秒前
神勇灵竹发布了新的文献求助20
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
chili完成签到,获得积分20
4秒前
4秒前
慕慕倾完成签到,获得积分10
5秒前
丰富的小猫咪完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
滴滴答答发布了新的文献求助10
6秒前
6秒前
酷酷云朵发布了新的文献求助10
7秒前
7秒前
Hello应助易中华采纳,获得10
8秒前
直率铃铛完成签到,获得积分10
8秒前
元谷雪发布了新的文献求助10
8秒前
法官大人发布了新的文献求助10
9秒前
9秒前
云白完成签到,获得积分10
10秒前
风云鱼完成签到,获得积分10
11秒前
zll发布了新的文献求助10
12秒前
云白发布了新的文献求助10
12秒前
勇敢发布了新的文献求助10
13秒前
共享精神应助滴滴答答采纳,获得10
13秒前
野性的柠檬完成签到,获得积分10
13秒前
Ava应助芝士椰果采纳,获得30
14秒前
华仔应助鱼鱼色采纳,获得10
14秒前
陶醉凝丝发布了新的文献求助10
14秒前
领导范儿应助roosterpan采纳,获得10
14秒前
15秒前
往枫完成签到,获得积分10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233