Towards enhanced structural stability by investigation of the mechanism of K ion doping in Na3V2(PO4)3/C for sodium ion batteries

电化学 兴奋剂 材料科学 电导率 阴极 晶体结构 密度泛函理论 离子 钠离子电池 快离子导体 电解质 化学 结晶学 物理化学 计算化学 电极 光电子学 有机化学 法拉第效率
作者
Jun Cong,Shaohua Luo,Peng-yu Li,Kun Li,Pengwei Li,Shengxue Yan
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:72: 108808-108808 被引量:20
标识
DOI:10.1016/j.est.2023.108808
摘要

Na3V2(PO4)3 is particularly suitable as cathode materials for sodium ion batteries (SIBs). Its NASICON structure is not only conducive to the rapid migration of Na+, but also has less volume deformation during Na+ deintercalation, and the main frame mechanism remains unchanged. However, owing to its own structure, the electronic conductivity is limited, which limits its practical application. Here, on the basis of carbon coating to enhance the electronic conductivity, the effect of sodium site doping of K+ on the structure and properties of Na3V2(PO4)3/C is deeply explored by comparing series Na3-xKxV2(PO4)3/C (x = 0, 0.05, 0.1, 0.15, 0.2). The initial discharge capacity of Na2.9K0.1V2(PO4)3/C is 107.7 mAh·g−1 in the potential range of 2.5–3.8 V at 0.2C, and the capacity remains 95 % after 300 cycles. The excellent performance of Na2.9K0.1V2(PO4)3/C benefits from the large radius of K+ as functional support ions, which lightly relieves the deformation pressure of Na+ during the deintercalation process, thereby stabilizing the crystal structure. Moreover, the doping of K+ plays a critical role in improving the diffusion coefficient of Na+. Density functional theory (DFT) calculations demonstrate that the Na-site doping of K+ can enhance the electronic conductivity of the material, which in turn brings excellent electrochemical performance. On the basis of carbon coating, Na2.9K0.1V2(PO4)3/C cathode materials with excellent electrochemical performance are obtained by doping K at theNa-site. The effect of Na-site doping of K+ on the structure and properties of Na3V2(PO4)3/C is deeply explored by comparing series Na3-xKxV2(PO4)3/C (x = 0, 0.05, 0.1, 0.15, 0.2). The mechanism of excellent electrochemical performance and structural stability caused by Na-site doping of K+ is revealed theoretically by DFT calculation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助六六采纳,获得10
1秒前
虞丹萱发布了新的文献求助10
2秒前
来年发布了新的文献求助10
3秒前
华仔应助友好聋五采纳,获得10
3秒前
5秒前
adamwang完成签到,获得积分10
6秒前
7秒前
佰斯特威应助开心的半仙采纳,获得10
8秒前
专一的台灯完成签到,获得积分10
8秒前
CipherSage应助lnan采纳,获得10
9秒前
9秒前
领导范儿应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
Marine发布了新的文献求助10
10秒前
香蕉厉发布了新的文献求助30
11秒前
11秒前
CGBIO完成签到,获得积分10
11秒前
11秒前
bingchem发布了新的文献求助200
12秒前
guanguan完成签到,获得积分10
12秒前
fd163c应助来年采纳,获得10
13秒前
wu发布了新的文献求助10
14秒前
15秒前
JACK发布了新的文献求助10
15秒前
19205100313应助啦啦啦采纳,获得10
15秒前
15秒前
16秒前
wanci应助hhhhhhmt采纳,获得10
19秒前
19秒前
友好聋五发布了新的文献求助10
20秒前
21秒前
哈罗发布了新的文献求助10
21秒前
牛油果果发布了新的文献求助10
22秒前
23秒前
Foremelon完成签到,获得积分10
23秒前
23秒前
和平发布了新的文献求助10
24秒前
华华爸完成签到,获得积分20
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3743745
求助须知:如何正确求助?哪些是违规求助? 3286402
关于积分的说明 10050098
捐赠科研通 3002950
什么是DOI,文献DOI怎么找? 1648568
邀请新用户注册赠送积分活动 784704
科研通“疑难数据库(出版商)”最低求助积分说明 750802