亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AMSSE-Net: Adaptive Multiscale Spatial–Spectral Enhancement Network for Classification of Hyperspectral and LiDAR Data

高光谱成像 计算机科学 激光雷达 遥感 传感器融合 人工智能 空间分析 模式识别(心理学) 多光谱图像 数据挖掘 地理
作者
Hongmin Gao,Hao Feng,Yiyan Zhang,Shufang Xu,Bing Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-17 被引量:26
标识
DOI:10.1109/tgrs.2023.3331486
摘要

With the abundant emergence of remote sensing data sources, multimodal remote sensing observation has become an active field. Extracting valuable information from multi-modal data has the potential to make a significant contribution to applications such as urban planning and monitoring. However, existing studies are deficient in extracting spectral and spatial features from hyperspectral remote sensing data. Meanwhile, the method of fusing multimodal features has limitations and poses a challenge to the convergence of the model loss function, which increases the complexity of the network model optimisation process. Therefore, this paper proposes an Adaptive Multi-scale Spatial–Spectral Enhancement Network for Classification of Hyperspectral and LiDAR Data called AMSSE-Net. First, we perform deep mining of spectral features in hyperspectral images by the involution operator. The main idea is to take full advantage of the involution operator in characterising spectral features by using the property that the convolution kernel shares the feature channels within the group. Furthermore, the multi-branching approach is used to extract the multi-scale information, and then the spectral-spatial features are formed with the strategy of hierarchical fusion. Meanwhile, we employ three-layer convolution for extracting shallow features from LiDAR data, offering supplementary information. Finally, we propose the "Adaptive Feature Fusion Module," an innovative and comprehensive mechanism designed for the fusion of features from diverse sources in multi-source data fusion. These dynamically assigned weights guide the selection of the optimal model, which is determined by the joint loss across the three methods, ultimately leading to the generation of an accurate prediction map. This approach not only helps to deeply explore the spectral spatial information in the hyperspectral data, but also effectively fuses the hyperspectral information with the elevation information from the LiDAR data. The expression ability of model features is rapidly improved by adaptive weighting, which in turn enhances the performance and generalisation ability of the model. Compared with some existing methods, extensive experiments on three popular HSI and LiDAR datasets show that our proposed AMSSE-Net can achieve better classification performance. The codes will be available at https://github.com/haofeng0003/AMSSE-Net, contributing to the RS community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
amengptsd完成签到,获得积分10
9秒前
maher应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
潮鸣完成签到 ,获得积分10
23秒前
46秒前
50秒前
副业科研完成签到,获得积分10
50秒前
易璇璇发布了新的文献求助10
52秒前
bji完成签到,获得积分10
1分钟前
斯文败类应助内向无春采纳,获得10
1分钟前
1分钟前
1分钟前
orangel发布了新的文献求助10
1分钟前
乐乐应助orangel采纳,获得10
1分钟前
孙明丽发布了新的文献求助20
1分钟前
孙明丽完成签到,获得积分10
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
Jasper应助科研通管家采纳,获得50
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
顾矜应助科研通管家采纳,获得10
2分钟前
竹青完成签到 ,获得积分10
2分钟前
2分钟前
内向无春发布了新的文献求助10
2分钟前
Peckhin完成签到 ,获得积分10
2分钟前
爆米花应助陈陈采纳,获得10
2分钟前
无限雪巧2发布了新的文献求助10
2分钟前
2分钟前
聪慧的小白菜完成签到 ,获得积分10
2分钟前
2分钟前
草木青发布了新的文献求助10
2分钟前
Owen应助远方采纳,获得10
2分钟前
3分钟前
陈陈发布了新的文献求助10
3分钟前
3分钟前
lililihui发布了新的文献求助10
3分钟前
Akim应助twk采纳,获得10
3分钟前
共享精神应助莫等闲采纳,获得10
3分钟前
草木青完成签到,获得积分10
3分钟前
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758141
求助须知:如何正确求助?哪些是违规求助? 3301061
关于积分的说明 10116217
捐赠科研通 3015484
什么是DOI,文献DOI怎么找? 1656142
邀请新用户注册赠送积分活动 790234
科研通“疑难数据库(出版商)”最低求助积分说明 753754