A lightweight multi-modality medical image semantic segmentation network base on the novel UNeXt and Wave-MLP

计算机科学 掷骰子 分割 块(置换群论) 模式识别(心理学) 人工智能 特征(语言学) F1得分 计算复杂性理论 路径(计算) 卷积神经网络 数据挖掘 算法 统计 数学 语言学 哲学 几何学 程序设计语言
作者
Yi He,Zhijun Gao,Yi Li,Zhiming Wang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:111: 102311-102311 被引量:9
标识
DOI:10.1016/j.compmedimag.2023.102311
摘要

Medical images sometimes contain diseased regions that are different sizes and. shapes, which makes it difficult to accurately segment these areas or their edges. However, directly coupling CNN and MLP to construct global and local dependency. models may also cause significant computational complexity issues. In this paper, a. unique, lightweight UNeXt network segmentation model for medical images based on. dynamic aggregation tokens was proposed. Firstly, the Wave Block module in Wave-MLP was introduced to replace the Tok-MLP module in UNeXt. The phase term in Wave Block can dynamically aggregate tokens, improving the segmentation accuracy of the model. Secondly, an AG attention gate module is added at the skip connection to suppress irrelevant feature representations in the sampling path of the encoding. network, thereby reducing computational costs and paying attention to noise and artifacts. Finally, the Focal Tversky Loss was added to handle both binary and multiple classification jobs. Quantitative and qualitative experiments were conducted on two public datasets: COVID-19 CT and BraTS 2018 MRI. The Dice score, Precision score, recall score, and Iou score of the proposed model on the COVID-19 dataset were 0.928, 0.867, 0.916, and 0.940, respectively. On BraTS 2018, the Dice scores of the ET, WT, and TC categories were 0.933, 0.925, and 0.918, respectively, and the HD scores were 1.595, 2.348, and 1.549, respectively. At the same time, the model is lightweight and has a considerably decreased training time with GFLOPs and Params of 0.52 and 0.76, respectively. The proposed lightweight model is superior to other existing methods in terms of segmentation accuracy and computing complexity according to experimental data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助归海紫翠采纳,获得30
刚刚
热情的初兰完成签到 ,获得积分10
1秒前
顺顺完成签到,获得积分10
1秒前
莫妮卡卡完成签到,获得积分10
1秒前
nbing完成签到,获得积分10
2秒前
SCI发布了新的文献求助50
2秒前
小猫多鱼完成签到,获得积分10
3秒前
3秒前
3秒前
默默尔烟发布了新的文献求助10
3秒前
3秒前
3秒前
宁静致远完成签到,获得积分10
3秒前
天天快乐应助内向秋寒采纳,获得10
6秒前
sfafasfsdf完成签到,获得积分10
6秒前
6秒前
luuuuuu发布了新的文献求助10
7秒前
lai发布了新的文献求助30
7秒前
7秒前
zrk发布了新的文献求助10
7秒前
7秒前
8秒前
ZJJ完成签到,获得积分10
8秒前
花开的声音1217完成签到,获得积分10
9秒前
古药完成签到,获得积分10
10秒前
赘婿应助烟雨行舟采纳,获得10
10秒前
seal发布了新的文献求助10
11秒前
11秒前
12秒前
不吃香菜发布了新的文献求助10
12秒前
RC_Wang应助ZJJ采纳,获得10
12秒前
Chridy发布了新的文献求助10
13秒前
13秒前
asipilin完成签到,获得积分10
13秒前
鼻揩了转去应助lixoii采纳,获得20
13秒前
14秒前
万能图书馆应助Steve采纳,获得10
15秒前
15秒前
15秒前
颛颛完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794