已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A lightweight multi-modality medical image semantic segmentation network base on the novel UNeXt and Wave-MLP

计算机科学 掷骰子 分割 块(置换群论) 模式识别(心理学) 人工智能 特征(语言学) F1得分 计算复杂性理论 路径(计算) 卷积神经网络 数据挖掘 算法 统计 数学 哲学 几何学 程序设计语言 语言学
作者
Yi He,Zhijun Gao,Yi Li,Zhiming Wang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:111: 102311-102311 被引量:11
标识
DOI:10.1016/j.compmedimag.2023.102311
摘要

Medical images sometimes contain diseased regions that are different sizes and. shapes, which makes it difficult to accurately segment these areas or their edges. However, directly coupling CNN and MLP to construct global and local dependency. models may also cause significant computational complexity issues. In this paper, a. unique, lightweight UNeXt network segmentation model for medical images based on. dynamic aggregation tokens was proposed. Firstly, the Wave Block module in Wave-MLP was introduced to replace the Tok-MLP module in UNeXt. The phase term in Wave Block can dynamically aggregate tokens, improving the segmentation accuracy of the model. Secondly, an AG attention gate module is added at the skip connection to suppress irrelevant feature representations in the sampling path of the encoding. network, thereby reducing computational costs and paying attention to noise and artifacts. Finally, the Focal Tversky Loss was added to handle both binary and multiple classification jobs. Quantitative and qualitative experiments were conducted on two public datasets: COVID-19 CT and BraTS 2018 MRI. The Dice score, Precision score, recall score, and Iou score of the proposed model on the COVID-19 dataset were 0.928, 0.867, 0.916, and 0.940, respectively. On BraTS 2018, the Dice scores of the ET, WT, and TC categories were 0.933, 0.925, and 0.918, respectively, and the HD scores were 1.595, 2.348, and 1.549, respectively. At the same time, the model is lightweight and has a considerably decreased training time with GFLOPs and Params of 0.52 and 0.76, respectively. The proposed lightweight model is superior to other existing methods in terms of segmentation accuracy and computing complexity according to experimental data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希捷方向发布了新的文献求助10
刚刚
顾矜应助cfv采纳,获得10
刚刚
打打应助1111111111111采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
xhz843完成签到 ,获得积分10
8秒前
爹爹发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
10秒前
11111发布了新的文献求助10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
Fancy应助科研通管家采纳,获得20
11秒前
华仔应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
柠檬酸发布了新的文献求助10
11秒前
12秒前
12秒前
wzx发布了新的文献求助10
14秒前
15秒前
liuz完成签到,获得积分0
15秒前
小风完成签到 ,获得积分10
16秒前
桐桐应助11111采纳,获得10
16秒前
16秒前
17秒前
深情安青应助快点喝奶茶采纳,获得10
17秒前
科研通AI2S应助GU采纳,获得10
19秒前
Youth发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779009
求助须知:如何正确求助?哪些是违规求助? 5645254
关于积分的说明 15451020
捐赠科研通 4910481
什么是DOI,文献DOI怎么找? 2642724
邀请新用户注册赠送积分活动 1590412
关于科研通互助平台的介绍 1544770