A lightweight multi-modality medical image semantic segmentation network base on the novel UNeXt and Wave-MLP

计算机科学 掷骰子 分割 块(置换群论) 模式识别(心理学) 人工智能 特征(语言学) F1得分 计算复杂性理论 路径(计算) 卷积神经网络 数据挖掘 算法 统计 数学 哲学 几何学 程序设计语言 语言学
作者
Yi He,Zhijun Gao,Yi Li,Zhiming Wang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:111: 102311-102311 被引量:11
标识
DOI:10.1016/j.compmedimag.2023.102311
摘要

Medical images sometimes contain diseased regions that are different sizes and. shapes, which makes it difficult to accurately segment these areas or their edges. However, directly coupling CNN and MLP to construct global and local dependency. models may also cause significant computational complexity issues. In this paper, a. unique, lightweight UNeXt network segmentation model for medical images based on. dynamic aggregation tokens was proposed. Firstly, the Wave Block module in Wave-MLP was introduced to replace the Tok-MLP module in UNeXt. The phase term in Wave Block can dynamically aggregate tokens, improving the segmentation accuracy of the model. Secondly, an AG attention gate module is added at the skip connection to suppress irrelevant feature representations in the sampling path of the encoding. network, thereby reducing computational costs and paying attention to noise and artifacts. Finally, the Focal Tversky Loss was added to handle both binary and multiple classification jobs. Quantitative and qualitative experiments were conducted on two public datasets: COVID-19 CT and BraTS 2018 MRI. The Dice score, Precision score, recall score, and Iou score of the proposed model on the COVID-19 dataset were 0.928, 0.867, 0.916, and 0.940, respectively. On BraTS 2018, the Dice scores of the ET, WT, and TC categories were 0.933, 0.925, and 0.918, respectively, and the HD scores were 1.595, 2.348, and 1.549, respectively. At the same time, the model is lightweight and has a considerably decreased training time with GFLOPs and Params of 0.52 and 0.76, respectively. The proposed lightweight model is superior to other existing methods in terms of segmentation accuracy and computing complexity according to experimental data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助阔达犀牛采纳,获得10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
Twonej应助一分儿采纳,获得30
2秒前
homer完成签到,获得积分0
2秒前
3秒前
冷酷静竹发布了新的文献求助10
4秒前
yy32323发布了新的文献求助10
4秒前
求助人员发布了新的文献求助10
4秒前
4秒前
AhhHuang应助jasmine0211采纳,获得10
4秒前
星辰大海应助端庄的寄凡采纳,获得10
4秒前
我是老大应助陈sir采纳,获得10
5秒前
Bingo发布了新的文献求助10
5秒前
5秒前
6秒前
orixero应助xiaofeidiao采纳,获得10
6秒前
李爱波完成签到,获得积分10
6秒前
烟花应助xiaopeilin1982采纳,获得20
6秒前
所所应助温柔的枫采纳,获得10
7秒前
所所应助笑点低的衬衫采纳,获得30
7秒前
huahua完成签到 ,获得积分10
8秒前
李爱波发布了新的文献求助10
9秒前
yy32323完成签到,获得积分20
10秒前
甜美青槐完成签到,获得积分10
10秒前
10秒前
樱桃发布了新的文献求助10
10秒前
hang发布了新的文献求助10
10秒前
10秒前
11秒前
万能图书馆应助Rocky_Qi采纳,获得10
11秒前
5114发布了新的文献求助20
11秒前
12秒前
12秒前
55发布了新的文献求助10
13秒前
毕业生完成签到,获得积分10
13秒前
weiwei发布了新的文献求助10
14秒前
LR发布了新的文献求助10
15秒前
eternity136发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049