A lightweight multi-modality medical image semantic segmentation network base on the novel UNeXt and Wave-MLP

计算机科学 掷骰子 分割 块(置换群论) 模式识别(心理学) 人工智能 特征(语言学) F1得分 计算复杂性理论 路径(计算) 卷积神经网络 数据挖掘 算法 统计 数学 语言学 哲学 几何学 程序设计语言
作者
Yi He,Zhijun Gao,Yi Li,Zhiming Wang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:111: 102311-102311 被引量:7
标识
DOI:10.1016/j.compmedimag.2023.102311
摘要

Medical images sometimes contain diseased regions that are different sizes and. shapes, which makes it difficult to accurately segment these areas or their edges. However, directly coupling CNN and MLP to construct global and local dependency. models may also cause significant computational complexity issues. In this paper, a. unique, lightweight UNeXt network segmentation model for medical images based on. dynamic aggregation tokens was proposed. Firstly, the Wave Block module in Wave-MLP was introduced to replace the Tok-MLP module in UNeXt. The phase term in Wave Block can dynamically aggregate tokens, improving the segmentation accuracy of the model. Secondly, an AG attention gate module is added at the skip connection to suppress irrelevant feature representations in the sampling path of the encoding. network, thereby reducing computational costs and paying attention to noise and artifacts. Finally, the Focal Tversky Loss was added to handle both binary and multiple classification jobs. Quantitative and qualitative experiments were conducted on two public datasets: COVID-19 CT and BraTS 2018 MRI. The Dice score, Precision score, recall score, and Iou score of the proposed model on the COVID-19 dataset were 0.928, 0.867, 0.916, and 0.940, respectively. On BraTS 2018, the Dice scores of the ET, WT, and TC categories were 0.933, 0.925, and 0.918, respectively, and the HD scores were 1.595, 2.348, and 1.549, respectively. At the same time, the model is lightweight and has a considerably decreased training time with GFLOPs and Params of 0.52 and 0.76, respectively. The proposed lightweight model is superior to other existing methods in terms of segmentation accuracy and computing complexity according to experimental data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
cc小木屋应助一只东北鸟采纳,获得10
2秒前
大饼发布了新的文献求助10
2秒前
2秒前
bofu发布了新的文献求助10
2秒前
3秒前
森林里的星星完成签到,获得积分20
3秒前
梓泽丘墟给KKND的求助进行了留言
4秒前
5秒前
5秒前
5秒前
Yingyli完成签到,获得积分10
5秒前
打工人发布了新的文献求助10
5秒前
小甜甜完成签到,获得积分10
6秒前
烟花应助zed采纳,获得10
6秒前
康舟发布了新的文献求助10
6秒前
6秒前
HANK2024完成签到,获得积分10
7秒前
8秒前
8秒前
呱呱完成签到 ,获得积分10
8秒前
8秒前
冷静的仙人掌完成签到,获得积分10
9秒前
彳亍1117应助安静一曲采纳,获得10
10秒前
酷波er应助Dreamalive12138采纳,获得10
10秒前
田様应助美丽的宝马采纳,获得10
10秒前
bofu发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
酷波er应助大饼采纳,获得10
11秒前
艳艳子完成签到,获得积分10
12秒前
罗小黑完成签到,获得积分10
12秒前
xiaohu发布了新的文献求助10
12秒前
12秒前
剑履上殿完成签到,获得积分10
13秒前
13秒前
搜集达人应助Bmyndm采纳,获得10
14秒前
一亿发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160703
求助须知:如何正确求助?哪些是违规求助? 2811860
关于积分的说明 7893601
捐赠科研通 2470679
什么是DOI,文献DOI怎么找? 1315754
科研通“疑难数据库(出版商)”最低求助积分说明 630993
版权声明 602053