Integrating Topographic Skeleton into Deep Learning for Terrain Reconstruction from GDEM and Google Earth Image

数字高程模型 地质学 地形 山脊 仰角(弹道) 地形图(神经解剖学) 遥感 人工智能 地图学 计算机科学 地理 几何学 数学 古生物学 心理学 认知心理学 后顶叶皮质
作者
Kai Chen,Chun Wang,Mingyue Lu,Wen Dai,Jiaxin Fan,Mengqi Li,Shaohua Lei
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (18): 4490-4490 被引量:3
标识
DOI:10.3390/rs15184490
摘要

The topographic skeleton is the primary expression and intuitive understanding of topographic relief. This study integrated a topographic skeleton into deep learning for terrain reconstruction. Firstly, a topographic skeleton, such as valley, ridge, and gully lines, was extracted from a global digital elevation model (GDEM) and Google Earth Image (GEI). Then, the Conditional Generative Adversarial Network (CGAN) was used to learn the elevation sequence information between the topographic skeleton and high-precision 5 m DEMs. Thirdly, different combinations of topographic skeletons extracted from 5 m, 12.5 m, and 30 m DEMs and a 1 m GEI were compared for reconstructing 5 m DEMs. The results show the following: (1) from the perspective of the visual effect, the 5 m DEMs generated with the three combinations (5 m DEM + 1 m GEI, 12.5 m DEM + 1 m GEI, and 30 m DEM + 1 m GEI) were all similar to the original 5 m DEM (reference data), which provides a markedly increased level of terrain detail information when compared to the traditional interpolation methods; (2) from the perspective of elevation accuracy, the 5 m DEMs reconstructed by the three combinations have a high correlation (>0.9) with the reference data, while the vertical accuracy of the 12.5 m DEM + 1 m GEI combination is obviously higher than that of the 30 m DEM + 1 m GEI combination; and (3) from the perspective of topographic factors, the distribution trends of the reconstructed 5 m DEMs are all close to the reference data in terms of the extracted slope and aspect. This study enhances the quality of open-source DEMs and introduces innovative ideas for producing high-precision DEMs. Among the three combinations, we recommend the 12.5 m DEM + 1 m GEI combination for DEM reconstruction due to its relative high accuracy and open access. In regions where a field survey of high-precision DEMs is difficult, open-source DEMs combined with GEI can be used in high-precision DEM reconstruction.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助啦啦啦咔哒采纳,获得10
刚刚
1秒前
lalaheilala完成签到 ,获得积分10
2秒前
2秒前
科研牛马完成签到,获得积分10
4秒前
4秒前
Tabby完成签到,获得积分10
4秒前
xiaoma发布了新的文献求助10
5秒前
ichris发布了新的文献求助10
5秒前
春鸮鸟完成签到 ,获得积分10
5秒前
泡泡鱼完成签到 ,获得积分10
7秒前
7秒前
慧慧发布了新的文献求助10
7秒前
Bonnie发布了新的文献求助10
8秒前
9秒前
不配.应助Spongeisla采纳,获得10
10秒前
golfgold完成签到,获得积分10
10秒前
12秒前
研友Bn完成签到 ,获得积分0
15秒前
55555发布了新的文献求助20
16秒前
suiwuya发布了新的文献求助10
16秒前
19秒前
22秒前
Bobby发布了新的文献求助10
24秒前
xxw应助阳佟听荷采纳,获得10
25秒前
固的曼完成签到,获得积分10
25秒前
英俊的铭应助Rita采纳,获得10
26秒前
泡泡汽水发布了新的文献求助10
26秒前
27秒前
27秒前
笑而不语发布了新的文献求助10
28秒前
28秒前
29秒前
小王同学完成签到,获得积分10
30秒前
宴之思完成签到,获得积分10
31秒前
林深时见鹿完成签到,获得积分20
31秒前
田様应助风中的冥王星采纳,获得10
32秒前
111发布了新的文献求助10
32秒前
小蛋糕卖男孩完成签到,获得积分10
33秒前
34秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
Manufacturing Consent: Changes in the Labor Process under Monopoly Capitalism 500
The Politics of Production: Factory Regimes under Capitalism and Socialism 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3383212
求助须知:如何正确求助?哪些是违规求助? 2997538
关于积分的说明 8775193
捐赠科研通 2683103
什么是DOI,文献DOI怎么找? 1469494
科研通“疑难数据库(出版商)”最低求助积分说明 679416
邀请新用户注册赠送积分活动 671672