地中海气候
气候学
蒸散量
环境科学
降水
耦合模型比对项目
气候变化
水文气象
气候模式
农业
水资源
地理
气象学
生态学
地质学
考古
生物
作者
Yassmin Hesham Essa,Martin Hirschi,Wim Thiery,Ahmed El Kenawy,Chunxue Yang
标识
DOI:10.1038/s41612-023-00458-4
摘要
Abstract The present work aims to address the physical properties of different drought types under near-future climates in the Mediterranean. To do so, we use a multi-model mean of the bias-adjusted and downscaled product of five Earth System Models participating in the Coupled Model Intercomparison Project—phase6 (CMIP6), provided by Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), under four shared socioeconomic pathways (SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5) for the period 2021–2060, to estimate the Standardized Precipitation Evapotranspiration Index (SPEI) at 1-, 6-, and 12-month time scales, and address the meteorological, agricultural, and hydrological drought, respectively. Additionally, SPEI is calculated from the bias-adjusted CMIP6 historical simulations and the reanalysis ‘WFDE5’ for 1980–2014 as a historical and reference period. The comparison of the CMIP6 with WFDE5 reveals a consistently increasing tendency for drought occurrences in the Mediterranean, particularly for agricultural and hydrological drought time scales. Nonetheless, an overestimation in historical trend magnitude is shown by the CMIP6 with respect to WFDE5. The projection results depict drought frequencies ranging between 12 and 25% of the studied period 2021–2060, varying with regions and climate scenarios. The tendency to increase the drought frequency is more pronounced in the southern than northern Mediterranean countries. Drought severity is remarkable in the aggregated time scales; consequently, more pressure is foreseen in the food and water sectors. Drought seasonality reveals a higher tendency for drought occurrences in summer (autumn) months for the meteorological (agricultural) droughts. The driving factor(s) for drought occurrence strongly depends on regional climate characteristics.
科研通智能强力驱动
Strongly Powered by AbleSci AI