纳米载体
药物输送
材料科学
纳米技术
靶向给药
膜
生物利用度
药理学
化学
生物
生物化学
作者
Di Ning,Zhi‐Gang Wang,Lei Wang,Yufei Tian,Jing Fang,Lin‐Han Jiang,Meng‐Qian Zhang,Yangyang Liu,Dai‐Wen Pang,Wonhwa Cho,Shu‐Lin Liu
标识
DOI:10.1002/adma.202306808
摘要
Abstract The plasma membranes (PM) of mammalian cells contain diverse lipids, proteins, and carbohydrates that are important for systemic recognition and communication in health and disease. Cell membrane coating technology that imparts unique properties of natural plasma membranes to the surface of encapsulated nanoparticles is thus becoming a powerful platform for drug delivery, immunomodulation, and vaccination. However, current coating methods fail to take full advantage of the natural systems because they disrupt the complex and functionally essential features of PMs, most notably the chemical diversity and compositional differences of lipids in two leaflets of the PM. Herein, a new lipid coating approach is reported in which the lipid composition is optimized through a combination of biomimetic and systematic variation approaches for the custom design of nanocarrier systems for precision drug delivery. Nanocarriers coated with the optimized lipids offer unique advantages in terms of bioavailability and efficiency in tumor targeting, tumor penetration, cellular uptake, and drug release. This pilot study provides new insight into the rational design and optimization of nanocarriers for cancer chemotherapeutic drugs and lays the foundation for further customization of cell membrane‐mimicking nanocarriers through systematic incorporation of other components.
科研通智能强力驱动
Strongly Powered by AbleSci AI