Dual-branch Feature Interaction Network for Coastal Wetland Classification Using Sentinel-1 and 2

计算机科学 合成孔径雷达 多光谱图像 特征提取 人工智能 传感器融合 数据挖掘 特征(语言学) 模式识别(心理学) 遥感 语言学 地质学 哲学
作者
Mingming Xu,Mingwei Liu,Yanfen Liu,Shanwei Liu,Hui Sheng
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jstars.2024.3440640
摘要

The combination of multispectral image (MSI) and synthetic aperture radar (SAR) data has made certain progress in coastal wetland classification. How to realize the interactive fusion between the two data and make full use of their fusion characteristics becomes challenging. However, the existing joint classification methods neglect interaction information between features and underutilize fusion features. Therefore, this paper proposes a dual-branch feature interaction network (DFI-Net) that joins MSI and SAR data for coastal wetland classification. The dual-branch independent structure of 3DCNN processing MSI and 2DCNN processing SAR is designed, which can effectively capture spectral-spatial features and polarization features. In addition, we develop two novel modules. The feature interaction fusion block (FIFB) is designed to enhance the complementarity between the features of the two kinds of data. This block employs a cross-agent attention mechanism to realize effective interaction between MSI and SAR features and adaptive fusion of contextual information from the two branches. Finally, a plug-and-play module channel-spatial transformer encode (CSTE) is proposed to improve the utilization rate of interactive fusion data. The CSTE utilizes two parallel transformers to deeply mine information in interactive fusion data, and explore channel-spatial features across all dimensions to the maximum extent possible. The classification experiment is conducted on the Yellow River Delta Coastal Wetland Dataset (YRCWD). The experimental results show that the overall accuracy (OA) of DFI-Net reaches 97.03%, which outperforms the performance of other competitive approaches. The effectiveness of DFI-Net provides a reference method for combining MSI and SAR for coastal wetland classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮浮发布了新的文献求助10
2秒前
cbf关闭了cbf文献求助
3秒前
如风随水发布了新的文献求助10
3秒前
4秒前
歪西西完成签到,获得积分10
4秒前
Arron发布了新的文献求助10
6秒前
7秒前
8秒前
sunbursl发布了新的文献求助10
9秒前
哇哇哇哇我应助燕子采纳,获得20
9秒前
SYLH应助滕皓轩采纳,获得30
10秒前
奇异果完成签到 ,获得积分10
12秒前
热心市民小红花应助Alice采纳,获得10
12秒前
小皮皮完成签到,获得积分10
13秒前
lanting发布了新的文献求助10
13秒前
哈哈哈完成签到 ,获得积分10
14秒前
丘比特应助冷傲熊猫采纳,获得30
17秒前
11完成签到,获得积分20
17秒前
18秒前
19秒前
浮浮完成签到,获得积分10
19秒前
无情的君浩应助读书狼采纳,获得30
20秒前
21秒前
23秒前
研友_Lmg1gZ发布了新的文献求助80
25秒前
端庄的踏歌完成签到,获得积分10
26秒前
JamesPei应助minmin采纳,获得10
28秒前
李爱国应助一二采纳,获得10
28秒前
31秒前
隐形曼青应助柴柴采纳,获得10
34秒前
34秒前
CQCQ发布了新的文献求助30
36秒前
37秒前
Lucas应助LL爱读书采纳,获得10
38秒前
一二发布了新的文献求助10
40秒前
11关注了科研通微信公众号
41秒前
42秒前
秀丽莛完成签到,获得积分20
43秒前
理想三寻完成签到,获得积分10
45秒前
别不开星完成签到,获得积分10
46秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003