Dual-branch Feature Interaction Network for Coastal Wetland Classification Using Sentinel-1 and 2

计算机科学 合成孔径雷达 多光谱图像 特征提取 人工智能 传感器融合 数据挖掘 特征(语言学) 模式识别(心理学) 遥感 哲学 语言学 地质学
作者
Mingming Xu,Mingwei Liu,Yanfen Liu,Shanwei Liu,Hui Sheng
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jstars.2024.3440640
摘要

The combination of multispectral image (MSI) and synthetic aperture radar (SAR) data has made certain progress in coastal wetland classification. How to realize the interactive fusion between the two data and make full use of their fusion characteristics becomes challenging. However, the existing joint classification methods neglect interaction information between features and underutilize fusion features. Therefore, this paper proposes a dual-branch feature interaction network (DFI-Net) that joins MSI and SAR data for coastal wetland classification. The dual-branch independent structure of 3DCNN processing MSI and 2DCNN processing SAR is designed, which can effectively capture spectral-spatial features and polarization features. In addition, we develop two novel modules. The feature interaction fusion block (FIFB) is designed to enhance the complementarity between the features of the two kinds of data. This block employs a cross-agent attention mechanism to realize effective interaction between MSI and SAR features and adaptive fusion of contextual information from the two branches. Finally, a plug-and-play module channel-spatial transformer encode (CSTE) is proposed to improve the utilization rate of interactive fusion data. The CSTE utilizes two parallel transformers to deeply mine information in interactive fusion data, and explore channel-spatial features across all dimensions to the maximum extent possible. The classification experiment is conducted on the Yellow River Delta Coastal Wetland Dataset (YRCWD). The experimental results show that the overall accuracy (OA) of DFI-Net reaches 97.03%, which outperforms the performance of other competitive approaches. The effectiveness of DFI-Net provides a reference method for combining MSI and SAR for coastal wetland classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI2S应助毛先生采纳,获得10
1秒前
坦率尔蓝完成签到,获得积分20
2秒前
2秒前
畅快的觅风完成签到,获得积分10
2秒前
爆米花应助郑郑采纳,获得10
3秒前
4秒前
干饭虫应助T102892采纳,获得10
4秒前
量子星尘发布了新的文献求助30
5秒前
Orange应助麻瓜采纳,获得10
5秒前
Joyce发布了新的文献求助10
6秒前
guoguo1119发布了新的文献求助10
6秒前
喵呜完成签到,获得积分10
7秒前
北北完成签到,获得积分10
7秒前
gk完成签到,获得积分20
8秒前
8秒前
9秒前
核桃应助slowfloat采纳,获得20
9秒前
JamesPei应助B站萧亚轩采纳,获得10
10秒前
搞怪雁风完成签到,获得积分10
10秒前
刘茗元发布了新的文献求助20
10秒前
10秒前
10秒前
10秒前
11秒前
上官若男应助wzc采纳,获得10
12秒前
arzw完成签到,获得积分10
12秒前
传统的妖妖完成签到,获得积分20
14秒前
脑洞疼应助why采纳,获得10
14秒前
搞怪雁风发布了新的文献求助10
15秒前
江湖护卫舰应助zzyluckyzoe采纳,获得10
15秒前
一叶知秋应助杜晓雯采纳,获得10
15秒前
科研通AI5应助凌兰采纳,获得30
16秒前
16秒前
16秒前
Akim应助潘小蓝采纳,获得10
16秒前
未晞发布了新的文献求助10
17秒前
杨家欢完成签到 ,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940989
求助须知:如何正确求助?哪些是违规求助? 4207022
关于积分的说明 13076328
捐赠科研通 3985793
什么是DOI,文献DOI怎么找? 2182277
邀请新用户注册赠送积分活动 1197870
关于科研通互助平台的介绍 1110197