Dual-branch Feature Interaction Network for Coastal Wetland Classification Using Sentinel-1 and 2

计算机科学 合成孔径雷达 多光谱图像 特征提取 人工智能 传感器融合 数据挖掘 特征(语言学) 模式识别(心理学) 遥感 语言学 地质学 哲学
作者
Mingming Xu,Mingwei Liu,Yanfen Liu,Shanwei Liu,Hui Sheng
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jstars.2024.3440640
摘要

The combination of multispectral image (MSI) and synthetic aperture radar (SAR) data has made certain progress in coastal wetland classification. How to realize the interactive fusion between the two data and make full use of their fusion characteristics becomes challenging. However, the existing joint classification methods neglect interaction information between features and underutilize fusion features. Therefore, this paper proposes a dual-branch feature interaction network (DFI-Net) that joins MSI and SAR data for coastal wetland classification. The dual-branch independent structure of 3DCNN processing MSI and 2DCNN processing SAR is designed, which can effectively capture spectral-spatial features and polarization features. In addition, we develop two novel modules. The feature interaction fusion block (FIFB) is designed to enhance the complementarity between the features of the two kinds of data. This block employs a cross-agent attention mechanism to realize effective interaction between MSI and SAR features and adaptive fusion of contextual information from the two branches. Finally, a plug-and-play module channel-spatial transformer encode (CSTE) is proposed to improve the utilization rate of interactive fusion data. The CSTE utilizes two parallel transformers to deeply mine information in interactive fusion data, and explore channel-spatial features across all dimensions to the maximum extent possible. The classification experiment is conducted on the Yellow River Delta Coastal Wetland Dataset (YRCWD). The experimental results show that the overall accuracy (OA) of DFI-Net reaches 97.03%, which outperforms the performance of other competitive approaches. The effectiveness of DFI-Net provides a reference method for combining MSI and SAR for coastal wetland classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
途中的人完成签到 ,获得积分10
1秒前
1秒前
1秒前
BowieHuang应助愉快的半双采纳,获得10
2秒前
蓝天应助愉快的半双采纳,获得10
2秒前
llf完成签到,获得积分10
2秒前
Allure发布了新的文献求助10
2秒前
2秒前
wyyt完成签到,获得积分10
3秒前
研友_VZG7GZ应助无声瀑布采纳,获得10
3秒前
3秒前
胖狗完成签到 ,获得积分10
3秒前
4秒前
Nell发布了新的文献求助10
4秒前
ding应助蠢蠢的死法采纳,获得10
4秒前
qqs完成签到,获得积分0
4秒前
5秒前
5秒前
BowieHuang应助热情初瑶采纳,获得10
6秒前
Hello应助隐形元绿采纳,获得10
6秒前
pio完成签到 ,获得积分10
6秒前
科研通AI2S应助ark861023采纳,获得10
6秒前
7秒前
霸气千易发布了新的文献求助10
7秒前
7秒前
浮浮世世发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
正反馈完成签到,获得积分10
8秒前
舒心灵萱发布了新的文献求助10
8秒前
善学以致用应助0610采纳,获得10
9秒前
9秒前
9秒前
dongzhiliang完成签到,获得积分10
10秒前
跨材料发布了新的社区帖子
10秒前
英俊的铭应助仔仔采纳,获得10
11秒前
小明发布了新的文献求助10
11秒前
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582755
求助须知:如何正确求助?哪些是违规求助? 4666874
关于积分的说明 14764127
捐赠科研通 4608899
什么是DOI,文献DOI怎么找? 2528885
邀请新用户注册赠送积分活动 1498196
关于科研通互助平台的介绍 1466887