Dual-branch Feature Interaction Network for Coastal Wetland Classification Using Sentinel-1 and 2

计算机科学 合成孔径雷达 多光谱图像 特征提取 人工智能 传感器融合 数据挖掘 特征(语言学) 模式识别(心理学) 遥感 语言学 地质学 哲学
作者
Mingming Xu,Mingwei Liu,Yanfen Liu,Shanwei Liu,Hui Sheng
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jstars.2024.3440640
摘要

The combination of multispectral image (MSI) and synthetic aperture radar (SAR) data has made certain progress in coastal wetland classification. How to realize the interactive fusion between the two data and make full use of their fusion characteristics becomes challenging. However, the existing joint classification methods neglect interaction information between features and underutilize fusion features. Therefore, this paper proposes a dual-branch feature interaction network (DFI-Net) that joins MSI and SAR data for coastal wetland classification. The dual-branch independent structure of 3DCNN processing MSI and 2DCNN processing SAR is designed, which can effectively capture spectral-spatial features and polarization features. In addition, we develop two novel modules. The feature interaction fusion block (FIFB) is designed to enhance the complementarity between the features of the two kinds of data. This block employs a cross-agent attention mechanism to realize effective interaction between MSI and SAR features and adaptive fusion of contextual information from the two branches. Finally, a plug-and-play module channel-spatial transformer encode (CSTE) is proposed to improve the utilization rate of interactive fusion data. The CSTE utilizes two parallel transformers to deeply mine information in interactive fusion data, and explore channel-spatial features across all dimensions to the maximum extent possible. The classification experiment is conducted on the Yellow River Delta Coastal Wetland Dataset (YRCWD). The experimental results show that the overall accuracy (OA) of DFI-Net reaches 97.03%, which outperforms the performance of other competitive approaches. The effectiveness of DFI-Net provides a reference method for combining MSI and SAR for coastal wetland classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
你好发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
传奇3应助热情嘉懿采纳,获得10
3秒前
5秒前
小H同学发布了新的文献求助10
5秒前
Jasper发布了新的文献求助10
5秒前
5秒前
zxl发布了新的文献求助10
5秒前
lzy发布了新的文献求助10
6秒前
lieqiang发布了新的文献求助10
6秒前
sean完成签到 ,获得积分10
6秒前
龚俊发布了新的文献求助10
7秒前
李爱国应助乐进采纳,获得10
7秒前
yang完成签到,获得积分10
7秒前
11发布了新的文献求助10
8秒前
七月完成签到,获得积分10
8秒前
李爱国应助含糊的翠曼采纳,获得10
8秒前
H1lb2rt完成签到 ,获得积分10
9秒前
今后应助silentdoubao采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
慕青应助lzy采纳,获得10
13秒前
sopha完成签到,获得积分10
15秒前
坦率灵槐完成签到,获得积分10
16秒前
16秒前
asdfg123发布了新的文献求助10
17秒前
kawai完成签到,获得积分10
17秒前
可爱的函函应助Amanda采纳,获得10
17秒前
18秒前
FashionBoy应助小泽采纳,获得10
20秒前
Hunter发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632254
求助须知:如何正确求助?哪些是违规求助? 4726532
关于积分的说明 14981567
捐赠科研通 4790212
什么是DOI,文献DOI怎么找? 2558228
邀请新用户注册赠送积分活动 1518633
关于科研通互助平台的介绍 1479071