Dual-branch Feature Interaction Network for Coastal Wetland Classification Using Sentinel-1 and 2

计算机科学 合成孔径雷达 多光谱图像 特征提取 人工智能 传感器融合 数据挖掘 特征(语言学) 模式识别(心理学) 遥感 哲学 语言学 地质学
作者
Mingming Xu,Mingwei Liu,Yanfen Liu,Shanwei Liu,Hui Sheng
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jstars.2024.3440640
摘要

The combination of multispectral image (MSI) and synthetic aperture radar (SAR) data has made certain progress in coastal wetland classification. How to realize the interactive fusion between the two data and make full use of their fusion characteristics becomes challenging. However, the existing joint classification methods neglect interaction information between features and underutilize fusion features. Therefore, this paper proposes a dual-branch feature interaction network (DFI-Net) that joins MSI and SAR data for coastal wetland classification. The dual-branch independent structure of 3DCNN processing MSI and 2DCNN processing SAR is designed, which can effectively capture spectral-spatial features and polarization features. In addition, we develop two novel modules. The feature interaction fusion block (FIFB) is designed to enhance the complementarity between the features of the two kinds of data. This block employs a cross-agent attention mechanism to realize effective interaction between MSI and SAR features and adaptive fusion of contextual information from the two branches. Finally, a plug-and-play module channel-spatial transformer encode (CSTE) is proposed to improve the utilization rate of interactive fusion data. The CSTE utilizes two parallel transformers to deeply mine information in interactive fusion data, and explore channel-spatial features across all dimensions to the maximum extent possible. The classification experiment is conducted on the Yellow River Delta Coastal Wetland Dataset (YRCWD). The experimental results show that the overall accuracy (OA) of DFI-Net reaches 97.03%, which outperforms the performance of other competitive approaches. The effectiveness of DFI-Net provides a reference method for combining MSI and SAR for coastal wetland classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QW111发布了新的文献求助10
刚刚
内向忆山完成签到,获得积分10
刚刚
米修发布了新的文献求助10
刚刚
小李发布了新的文献求助10
刚刚
拟好啊发布了新的文献求助10
刚刚
刚刚
邱穗发布了新的文献求助10
1秒前
大模型应助xzx采纳,获得10
2秒前
2秒前
俭朴的半雪完成签到 ,获得积分10
2秒前
Psycho发布了新的文献求助10
2秒前
2秒前
所所应助姜彩秀采纳,获得10
2秒前
李爱国应助温柔梦松采纳,获得10
3秒前
高兴映菱完成签到,获得积分20
3秒前
张桂钊发布了新的文献求助10
3秒前
BareBear应助今晚吃什么采纳,获得10
3秒前
优雅战斗机完成签到,获得积分20
3秒前
AHR发布了新的文献求助10
4秒前
4秒前
小蛋糕卖男孩完成签到,获得积分10
4秒前
tingting完成签到 ,获得积分10
4秒前
4秒前
喜宝完成签到 ,获得积分10
4秒前
大劲发布了新的文献求助10
5秒前
cigarhat发布了新的文献求助10
5秒前
5秒前
Leticia完成签到,获得积分10
5秒前
思源应助大家好车架号h采纳,获得10
6秒前
tata0215完成签到 ,获得积分10
6秒前
关尔匕禾页完成签到,获得积分10
7秒前
科目三应助嘎嘎嘎采纳,获得10
7秒前
7秒前
bmhs2017应助米修采纳,获得10
7秒前
之贻发布了新的文献求助30
8秒前
zixn完成签到,获得积分10
8秒前
甲乙丙丁发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409994
求助须知:如何正确求助?哪些是违规求助? 4527505
关于积分的说明 14111164
捐赠科研通 4441880
什么是DOI,文献DOI怎么找? 2437744
邀请新用户注册赠送积分活动 1429674
关于科研通互助平台的介绍 1407750