Integrated deep learning model for automatic detection and classification of stenosis in coronary angiography

冠状动脉造影 狭窄 放射科 医学 人工智能 血管造影 深度学习 心脏病学 计算机科学 内科学 心肌梗塞
作者
Tao Wang,SU Xiao-jun,Yuchao Liang,Xu Luo,Xiao Hu,Ting Xia,Wei Ma,Yongchun Zuo,Xia Hui-lin,Lei Yang
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:112: 108184-108184
标识
DOI:10.1016/j.compbiolchem.2024.108184
摘要

Coronary artery disease poses a significant threat to human health. In clinical settings, coronary angiography remains the gold standard for diagnosing coronary heart disease. A crucial aspect of this diagnosis involves detecting arterial narrowings. Categorizing these narrowings can provide insight into whether patients should receive vascular revascularization treatment. The majority of current deep learning methods for analyzing coronary angiography are mostly confined to the theoretical research domain, with limited studies offering direct practical support to clinical practitioners. This paper proposes an integrated deep-learning model for the localization and classification of narrowings in coronary angiography images. The experimentation employed 1606 coronary angiography images obtained from 132 patients, resulting in an accuracy of 88.9 %, a recall rate of 85.4 %, an F1 score of 0.871, and a MAP value of 0.875 for vascular stenosis detection. Furthermore, we developed the "Hemadostenosis" web platform (http://bioinfor.imu.edu.cn/hemadostenosis) using Django, a highly mature HTTP framework. Users are able to submit coronary angiography image data for assessment via a visual interface. Subsequently, the system sends the images to a trained convolutional neural network model to localize and categorize the narrowings. Finally, the visualized outcomes are displayed to users and are downloadable. Our proposed approach pioneers the recognition and categorization of arterial narrowings in vascular angiography, offering practical support to clinical practitioners in their learning and diagnostic processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
媚醉红颜发布了新的文献求助10
1秒前
WHH发布了新的文献求助10
1秒前
1秒前
lili完成签到,获得积分10
1秒前
桐桐应助HangY采纳,获得10
1秒前
专注凌文发布了新的文献求助10
2秒前
两院候选人应助76采纳,获得10
2秒前
2秒前
2秒前
丘比特应助张萝卜采纳,获得20
3秒前
英俊的铭应助长生采纳,获得10
3秒前
所所应助量好洗采纳,获得10
4秒前
枫叶冰域完成签到,获得积分10
4秒前
xun发布了新的文献求助10
4秒前
含糊的凝雁完成签到 ,获得积分10
4秒前
5秒前
饱满绝施应助明理采珊采纳,获得10
5秒前
lalala应助明理采珊采纳,获得10
5秒前
czy完成签到,获得积分10
5秒前
肖珂完成签到,获得积分10
6秒前
7秒前
7秒前
枫叶冰域发布了新的文献求助10
7秒前
wyt完成签到,获得积分20
7秒前
呆萌的乾发布了新的文献求助10
8秒前
Smour完成签到,获得积分10
8秒前
9秒前
腹愁者完成签到,获得积分20
9秒前
Xiang发布了新的文献求助10
9秒前
完美夏天发布了新的文献求助10
10秒前
10秒前
11秒前
打打应助科研通管家采纳,获得10
11秒前
刘维尼发布了新的文献求助10
11秒前
小芳应助科研通管家采纳,获得20
11秒前
嘤嘤怪应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
Yziii应助科研通管家采纳,获得20
11秒前
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942188
关于积分的说明 8507596
捐赠科研通 2617188
什么是DOI,文献DOI怎么找? 1429994
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186