Integrating Molecular Dynamics and Machine Learning Algorithms to Predict the Functional Profile of Kinase Ligands

计算机科学 分子动力学 动力学(音乐) 人工智能 机器学习 算法 计算生物学 化学 生物 计算化学 物理 声学
作者
Elena Frasnetti,Ivan Cucchi,Silvia Pavoni,Francesco Frigerio,Fabrizio Cinquini,Stefano A. Serapian,Luca F. Pavarino,Giorgio Colombo
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
标识
DOI:10.1021/acs.jctc.4c01097
摘要

The modulation of protein function via designed small molecules is providing new opportunities in chemical biology and medicinal chemistry. While drugs have traditionally been developed to block enzymatic activities through active site occupation, a growing number of strategies now aim to control protein functions in an allosteric fashion, allowing for the tuning of a target's activation or deactivation via the modulation of the populations of conformational ensembles that underlie its function. In the context of the discovery of new active leads, it would be very useful to generate hypotheses for the functional impact of new ligands. Since the discovery and design of allosteric modulators (inhibitors/activators) is still a challenging and often serendipitous target, the development of a rapid and robust approach to predict the functional profile of a new ligand would significantly speed up candidate selection. Herein, we present different machine learning (ML) classifiers to distinguish between potential orthosteric and allosteric binders. Our approach integrates information on the chemical fingerprints of the ligands with descriptors that recapitulate ligand effects on protein functional motions. The latter are derived from molecular dynamics (MD) simulations of the target protein in complex with orthosteric or allosteric ligands. In this framework, we train and test different ML architectures, which are initially probed on the classification of orthosteric versus allosteric ligands for cyclin-dependent kinases (CDKs). The results demonstrate that different ML methods can successfully partition allosteric versus orthosteric effectors (although to different degrees). Next, we further test the models with FDA-approved CDK drugs, not included in the original dataset, as well as ligands that target other kinases, to test the range of applicability of these models outside of the domain on which they were developed. Overall, the results show that enriching the training dataset with chemical physics-based information on the protein–ligand dynamic cross-talk can significantly expand the reach and applicability of approaches for the prediction and classification of the mode of action of small molecules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含蓄清炎完成签到,获得积分10
刚刚
刚刚
1秒前
sea2023发布了新的文献求助10
1秒前
彭于彦祖应助tp040900采纳,获得20
2秒前
2秒前
科研通AI2S应助菠萝汁采纳,获得10
2秒前
2秒前
3秒前
bcsunny2022完成签到,获得积分10
3秒前
夏山完成签到,获得积分10
3秒前
Lucas应助biubiufan采纳,获得10
3秒前
52hezi完成签到,获得积分10
3秒前
shibomeng发布了新的文献求助10
5秒前
甜瓜完成签到,获得积分10
5秒前
美丽蘑菇完成签到 ,获得积分10
5秒前
6秒前
6秒前
科研通AI2S应助aaaaaab采纳,获得10
7秒前
科研通AI2S应助鸢尾蓝采纳,获得10
7秒前
7秒前
lixiao发布了新的文献求助10
7秒前
8秒前
田様应助王博士采纳,获得10
8秒前
Lucas应助sea2023采纳,获得10
8秒前
酷波er应助明理宝莹采纳,获得10
8秒前
谨慎幻丝应助tp040900采纳,获得20
9秒前
zzz完成签到,获得积分10
9秒前
忆韵发布了新的文献求助10
10秒前
fan发布了新的文献求助10
10秒前
我是老大应助zzzxh采纳,获得10
11秒前
ZZZ完成签到 ,获得积分10
11秒前
11秒前
11秒前
CipherSage应助SKZ采纳,获得10
11秒前
12秒前
ffff发布了新的文献求助10
12秒前
英俊的铭应助辛勤的志泽采纳,获得30
13秒前
13秒前
Sekiro完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123270
求助须知:如何正确求助?哪些是违规求助? 2773756
关于积分的说明 7719288
捐赠科研通 2429428
什么是DOI,文献DOI怎么找? 1290306
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251