微观结构
润湿
阳极
材料科学
冶金
金属
钠
复合材料
化学
电极
物理化学
作者
C.-H. Lo,Yixian Wang,Varun R. Kankanallu,Aditya Singla,Dean Yen,Xiaoyin Zheng,Kaustubh G. Naik,Bairav S. Vishnugopi,Callum J. Campbell,Vikalp Raj,Chonghang Zhao,Lu Ma,Jianming Bai,Feipeng Yang,Ruipeng Li,Mingyuan Ge,John Watt,Partha P. Mukherjee,David Mitlin,Yu-Chen Karen Chen-Wiegart
出处
期刊:PubMed
日期:2024-09-15
卷期号:: e202412550-e202412550
标识
DOI:10.1002/anie.202412550
摘要
This study examines how current collector support chemistry (sodiophilic intermetallic Na2Te vs. sodiophobic baseline Cu) and electrodeposition rate affect microstructure of sodium metal and its solid electrolyte interphase (SEI). Capacity and current (6 mAh cm-2, 0.5-3 mA cm-2) representative of commercially relevant mass loading in anode-free sodium metal battery (AF-SMBs) are analyzed. Synchrotron X-ray nanotomography and grazing-incidence wide-angle X-ray scattering (GIWAXS) are combined with cryogenic focused ion beam (cryo-FIB) microscopy. Highlighted are major differences in film morphology, internal porosity, and crystallographic preferred orientation e.g. (110) vs. (100) and (211) with support and deposition rate. Within the SEI, sodium fluoride (NaF) is more prevalent with Te-Cu versus sodium hydride (NaH) and sodium hydroxide (NaOH) with baseline Cu. Due to competitive grain growth the preferred orientation of sodium crystallites depends on film thickness. Mesoscale modelling delineates the role of SEI (ionic conductivity, morphology) on electrodeposit growth and onset of electrochemical instability.
科研通智能强力驱动
Strongly Powered by AbleSci AI