An Adaptive Noise Reduction Method for High Temperature and Low Voltage Electromagnetic Detection Signals Based on SVMD Combined with ICEEMDAN

希尔伯特-黄变换 声学 峰度 降噪 噪音(视频) 工程类 滤波器(信号处理) 计算机科学 数学 物理 电气工程 人工智能 统计 图像(数学)
作者
Zhizeng Ge,Jinjie Zhou,Xingquan Shen,Xingjun Zhang,Caixia Qi
出处
期刊:Micromachines [MDPI AG]
卷期号:15 (8): 977-977
标识
DOI:10.3390/mi15080977
摘要

In view of the low signal-to-noise ratio (SNR) of shear wave electromagnetic acoustic transducers (EMAT) in the detection of high-temperature equipment, the use of low excitation voltage (LEV) further deteriorates the detection results, resulting in the echo signal containing defects being drowned in noise. For the extraction of the EMAT signal, an adaptive noise reduction method is proposed. Firstly, the minimum envelope entropy is taken as the fitness function for the Harris Hawks Optimizer (HHO), and the optimal successive variational mode decomposition (SVMD) balance parameter is searched by HHO adaptive iteration to decompose LEV EMAT signals at high temperatures. Then the filter is carried out according to the excitation center frequency and correlation coefficient threshold function. Then, improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is used to decompose the filtered signal and combine the kurtosis factor to select the appropriate intrinsic mode functions. Finally, the signal is extracted by the Hilbert transform. In order to verify the effectiveness of the method, it is applied to the low-voltage detection of 40Cr from 25 °C to 700 °C. The results show that the method not only suppresses the background noise and clutter noise but also significantly improves the SNR of EMAT signals, and most importantly, it is able to detect and extract the 2 mm small defects from the echo signals. It has great application prospects and value in the LEV detection of high-temperature equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助整齐的不评采纳,获得10
刚刚
ZR14124完成签到,获得积分10
刚刚
1秒前
李健应助忧郁慕青采纳,获得10
1秒前
quhayley应助daisy采纳,获得10
1秒前
haha发布了新的文献求助20
1秒前
1秒前
2秒前
2秒前
十公里发布了新的文献求助10
2秒前
子车茗应助hhh采纳,获得10
3秒前
万能图书馆应助wu采纳,获得10
3秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
4秒前
慕青应助科研通管家采纳,获得10
4秒前
迷路海蓝应助科研通管家采纳,获得40
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
迷路海蓝应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Aura完成签到,获得积分10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
orixero应助科研通管家采纳,获得200
6秒前
华仔应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152731
求助须知:如何正确求助?哪些是违规求助? 2803968
关于积分的说明 7856424
捐赠科研通 2461663
什么是DOI,文献DOI怎么找? 1310474
科研通“疑难数据库(出版商)”最低求助积分说明 629233
版权声明 601782