Leveraging New Approach Methodologies: Ecotoxicological Modelling of Endocrine Disrupting Chemicals to Danio rerio through Machine Learning and Toxicity Studies

达尼奥 毒性 内分泌干扰物 化学毒性 内分泌系统 毒理 药理学 生物 斑马鱼 医学 激素 内科学 生物化学 基因
作者
Gopal Italiya,Sangeetha Subramanian
出处
期刊:Toxicology Mechanisms and Methods [Informa]
卷期号:: 1-17
标识
DOI:10.1080/15376516.2024.2400324
摘要

Emerging endocrine-disrupting chemicals (EDCs) are a diverse group of toxic substances that disrupt the endocrine system. These substances can only be approved after obtaining concrete evidence of their toxicity. New approach methodologies (NAMs) offer information tailored to the intended application while reducing the use of animals. NAMs aim to develop quantitative structure-activity relationship (QSAR) and quantitive-Read-Across structure-activity relationship (q-RASAR) models to predict and categorize the acute toxicity of known and unknown EDCs. The q-RASAR model was constructed and verified using validation metrics (R2 = 0.886 and Q2 = 0.814). The substructure fingerprint was well-fitted for the classification model and the model was validated using 10-fold average accuracy (Q = 86.88%), specificity (Sp = 88.89%), Matthew's correlation curve (MCC = 0.621) and receiver operating characteristics (ROC = 0.828). The dataset of unknown substances revealed that phenolphthalein (Php) exhibited a significant level of toxicity. The docking and simulation study results indicated that the computationally derived important features successfully bound to the target zebrafish sex hormone binding globulin (zfSHBG). The experimental LC50 value of 0.790 mg L−1 was very close to the predicted value of 0.763 mg L−1, which provides high confidence to the developed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234567890完成签到,获得积分10
刚刚
彩色夏波发布了新的文献求助10
1秒前
劲秉应助跳舞的俏皮采纳,获得20
1秒前
1秒前
wy.he完成签到,获得积分0
2秒前
小林太郎应助小磊采纳,获得20
2秒前
QinMengyao完成签到,获得积分10
2秒前
hhh完成签到,获得积分10
3秒前
朴素的不乐完成签到 ,获得积分10
3秒前
旺旺应助刻苦若冰采纳,获得10
3秒前
Accept应助song24517采纳,获得20
4秒前
CC发布了新的文献求助10
4秒前
从容的海云完成签到,获得积分20
4秒前
4秒前
脑洞疼应助小张采纳,获得10
4秒前
爆米花应助gaos采纳,获得10
5秒前
虚安发布了新的文献求助10
6秒前
1234567890发布了新的文献求助10
6秒前
阔达萧发布了新的文献求助10
6秒前
6秒前
RRRIGO完成签到,获得积分10
7秒前
7秒前
嘻嘻完成签到,获得积分10
7秒前
皓月千里发布了新的文献求助10
9秒前
9秒前
合适怜南完成签到,获得积分10
9秒前
李健应助缥缈的迎夏采纳,获得10
9秒前
adfadf完成签到,获得积分20
10秒前
烟花应助SQ采纳,获得10
10秒前
11秒前
阔达萧完成签到,获得积分20
11秒前
恋上鱼的猫完成签到,获得积分10
11秒前
11秒前
aprise完成签到 ,获得积分10
12秒前
爆米花应助舒适的紫丝采纳,获得10
12秒前
科研萌新完成签到,获得积分10
12秒前
12秒前
一夜很静应助细腻白柏采纳,获得10
13秒前
14秒前
搜集达人应助www采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678