Cross-subject emotion recognition in brain-computer interface based on frequency band attention graph convolutional adversarial neural networks

计算机科学 脑电图 鉴别器 模式识别(心理学) 人工智能 卷积神经网络 频域 图形 特征提取 语音识别 心理学 理论计算机科学 计算机视觉 电信 探测器 精神科
作者
Shinan Chen,Yuchen Wang,Xuefen Lin,Xiaoyong Sun,Weihua Li,Weifeng Ma
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:: 110276-110276
标识
DOI:10.1016/j.jneumeth.2024.110276
摘要

Emotion is an important area in neuroscience. Cross-subject emotion recognition based on electroencephalogram (EEG) data is challenging due to physiological differences between subjects. Domain gap, which refers to the different distributions of EEG data at different subjects, has attracted great attention for cross-subject emotion recognition. This study focuses on narrowing the domain gap between subjects through the emotional frequency bands and the relationship information between EEG channels. Emotional frequency band features represent the energy distribution of EEG data in different frequency ranges, while relationship information between EEG channels provides spatial distribution information about EEG data. To achieve this, this paper proposes a model called the Frequency Band Attention Graph convolutional Adversarial neural Network (FBAGAN). This model includes three components: a feature extractor, a classifier, and a discriminator. The feature extractor consists of a layer with a frequency band attention mechanism and a graph convolutional neural network. The mechanism effectively extracts frequency band information by assigning weights and Graph Convolutional Networks can extract relationship information between EEG channels by modeling the graph structure. The discriminator then helps minimize the gap in the frequency information and relationship information between the source and target domains, improving the model's ability to generalize. The FBAGAN model is extensively tested on the SEED, SEED-IV, and DEAP datasets. The accuracy and standard deviation scores are 88.17% and 4.88, respectively, on the SEED dataset, and 77.35% and 3.72 on the SEED-IV dataset. On the DEAP dataset, the model achieves 69.64% for Arousal and 65.18% for Valence. These results outperform most existing models. The experiments indicate that FBAGAN effectively addresses the challenges of transferring EEG channel domain and frequency band domain, leading to improved performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
时光友岸完成签到,获得积分10
3秒前
满天星应助科研通管家采纳,获得10
4秒前
4秒前
顾矜应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
CipherSage应助123采纳,获得10
5秒前
5秒前
霸气的冰旋完成签到,获得积分10
6秒前
小二郎应助Eurus采纳,获得10
6秒前
wanci应助angelfern采纳,获得10
7秒前
情怀应助含糊的凝芙采纳,获得10
7秒前
医研丁真完成签到,获得积分10
7秒前
Furmark_14完成签到,获得积分10
10秒前
深情安青应助南京小鱼儿采纳,获得10
10秒前
天天开心完成签到,获得积分10
11秒前
同城代打发布了新的文献求助10
11秒前
Wait发布了新的文献求助10
11秒前
12秒前
leuyp完成签到,获得积分10
12秒前
13秒前
14秒前
Singularity应助ccc采纳,获得20
14秒前
王小五发布了新的文献求助10
14秒前
lilyyan发布了新的文献求助10
16秒前
一条小胖鱼完成签到,获得积分10
16秒前
Lee2000发布了新的文献求助10
16秒前
17秒前
18秒前
19秒前
带头大哥应助百里守时采纳,获得200
19秒前
21秒前
21秒前
22秒前
Wait完成签到,获得积分10
22秒前
星辰大海应助nidhhog采纳,获得10
23秒前
23秒前
tuanheqi应助尤萨采纳,获得80
23秒前
从容的水壶完成签到,获得积分10
24秒前
24秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3094678
求助须知:如何正确求助?哪些是违规求助? 2746470
关于积分的说明 7590539
捐赠科研通 2397890
什么是DOI,文献DOI怎么找? 1272222
科研通“疑难数据库(出版商)”最低求助积分说明 615340
版权声明 598860