ThermoLink: Bridging disulfide bonds and enzyme thermostability through database construction and machine learning prediction

热稳定性 化学 蛋白质二硫键异构酶 半胱氨酸 共价键 蛋白质折叠 二硫键 组合化学 生物化学 有机化学
作者
Ran Xu,Qican Pan,Guoliang Zhu,Yilin Ye,Minghui Xin,Zechen Wang,Sheng Wang,Weifeng Li,Yanjie Wei,Jingjing Guo,Liangzhen Zheng
出处
期刊:Protein Science [Wiley]
卷期号:33 (9) 被引量:3
标识
DOI:10.1002/pro.5097
摘要

Abstract Disulfide bonds, covalently formed by sulfur atoms in cysteine residues, play a crucial role in protein folding and structure stability. Considering their significance, artificial disulfide bonds are often introduced to enhance protein thermostability. Although an increasing number of tools can assist with this task, significant amounts of time and resources are often wasted owing to inadequate consideration. To enhance the accuracy and efficiency of designing disulfide bonds for protein thermostability improvement, we initially collected disulfide bond and protein thermostability data from extensive literature sources. Thereafter, we extracted various sequence‐ and structure‐based features and constructed machine‐learning models to predict whether disulfide bonds can improve protein thermostability. Among all models, the neighborhood context model based on the Adaboost‐DT algorithm performed the best, yielding “area under the receiver operating characteristic curve” and accuracy scores of 0.773 and 0.714, respectively. Furthermore, we also found AlphaFold2 to exhibit high superiority in predicting disulfide bonds, and to some extent, the coevolutionary relationship between residue pairs potentially guided artificial disulfide bond design. Moreover, several mutants of imine reductase 89 (IR89) with artificially designed thermostable disulfide bonds were experimentally proven to be considerably efficient for substrate catalysis. The SS‐bond data have been integrated into an online server, namely, ThermoLink, available at guolab.mpu.edu.mo/thermoLink .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
情怀应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
科目三应助腾腾采纳,获得10
3秒前
baoziya发布了新的文献求助10
3秒前
爆米花应助thea采纳,获得10
3秒前
3秒前
解忧发布了新的文献求助10
4秒前
阿福完成签到,获得积分10
4秒前
4秒前
烤冷面发布了新的文献求助10
5秒前
无花果应助默默尔安采纳,获得10
6秒前
Mr鹿发布了新的文献求助10
8秒前
8秒前
李爱国应助MHY采纳,获得10
8秒前
baoziya完成签到,获得积分10
9秒前
归尘完成签到,获得积分20
9秒前
9秒前
无情干饭崽完成签到,获得积分10
10秒前
10秒前
10秒前
李健应助uiai采纳,获得10
10秒前
高分求助中
Fermented Coffee Market 2000
美国药典 1000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5238606
求助须知:如何正确求助?哪些是违规求助? 4406222
关于积分的说明 13713290
捐赠科研通 4274671
什么是DOI,文献DOI怎么找? 2345662
邀请新用户注册赠送积分活动 1342684
关于科研通互助平台的介绍 1300713