ThermoLink: Bridging disulfide bonds and enzyme thermostability through database construction and machine learning prediction

热稳定性 化学 蛋白质二硫键异构酶 半胱氨酸 共价键 蛋白质折叠 二硫键 组合化学 生物化学 有机化学
作者
Ran Xu,Qican Pan,Guoliang Zhu,Yilin Ye,Minghui Xin,Zechen Wang,Sheng Wang,Weifeng Li,Yanjie Wei,Jingjing Guo,Liangzhen Zheng
出处
期刊:Protein Science [Wiley]
卷期号:33 (9) 被引量:3
标识
DOI:10.1002/pro.5097
摘要

Abstract Disulfide bonds, covalently formed by sulfur atoms in cysteine residues, play a crucial role in protein folding and structure stability. Considering their significance, artificial disulfide bonds are often introduced to enhance protein thermostability. Although an increasing number of tools can assist with this task, significant amounts of time and resources are often wasted owing to inadequate consideration. To enhance the accuracy and efficiency of designing disulfide bonds for protein thermostability improvement, we initially collected disulfide bond and protein thermostability data from extensive literature sources. Thereafter, we extracted various sequence‐ and structure‐based features and constructed machine‐learning models to predict whether disulfide bonds can improve protein thermostability. Among all models, the neighborhood context model based on the Adaboost‐DT algorithm performed the best, yielding “area under the receiver operating characteristic curve” and accuracy scores of 0.773 and 0.714, respectively. Furthermore, we also found AlphaFold2 to exhibit high superiority in predicting disulfide bonds, and to some extent, the coevolutionary relationship between residue pairs potentially guided artificial disulfide bond design. Moreover, several mutants of imine reductase 89 (IR89) with artificially designed thermostable disulfide bonds were experimentally proven to be considerably efficient for substrate catalysis. The SS‐bond data have been integrated into an online server, namely, ThermoLink, available at guolab.mpu.edu.mo/thermoLink .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenyiren完成签到,获得积分10
刚刚
刚刚
小马甲应助温婉的念文采纳,获得10
刚刚
传奇3应助Saven采纳,获得10
刚刚
1秒前
CipherSage应助天蓬猪大帅采纳,获得10
2秒前
深情安青应助欧阳铭采纳,获得10
2秒前
3秒前
xinyu发布了新的文献求助10
4秒前
AKIN发布了新的文献求助10
6秒前
6秒前
Zephyr发布了新的文献求助30
9秒前
10秒前
新小pi发布了新的文献求助10
10秒前
chenbo关注了科研通微信公众号
10秒前
10秒前
天天快乐应助加缪采纳,获得10
11秒前
追风少年发布了新的文献求助10
13秒前
Danny发布了新的文献求助10
13秒前
13秒前
瞬间完成签到 ,获得积分10
16秒前
1000x完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
20秒前
科研通AI2S应助羊羊酱采纳,获得10
21秒前
CodeCraft应助林牧采纳,获得10
22秒前
芋泥完成签到,获得积分10
22秒前
22秒前
科研通AI5应助喵喵采纳,获得10
22秒前
Danny完成签到,获得积分20
22秒前
李爱国应助刘刘佳采纳,获得10
23秒前
加缪发布了新的文献求助10
23秒前
木木林发布了新的文献求助10
24秒前
24秒前
kylin发布了新的文献求助10
24秒前
伍六七发布了新的文献求助10
25秒前
chekd完成签到,获得积分20
26秒前
动听的秋白完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5159157
求助须知:如何正确求助?哪些是违规求助? 4353699
关于积分的说明 13556582
捐赠科研通 4197328
什么是DOI,文献DOI怎么找? 2302011
邀请新用户注册赠送积分活动 1302035
关于科研通互助平台的介绍 1247140