ThermoLink: Bridging disulfide bonds and enzyme thermostability through database construction and machine learning prediction

热稳定性 化学 蛋白质二硫键异构酶 半胱氨酸 共价键 蛋白质折叠 二硫键 组合化学 生物化学 有机化学
作者
Ran Xu,Qican Pan,Guoliang Zhu,Yilin Ye,Minghui Xin,Zechen Wang,Sheng Wang,Weifeng Li,Yanjie Wei,Jingjing Guo,Liangzhen Zheng
出处
期刊:Protein Science [Wiley]
卷期号:33 (9) 被引量:3
标识
DOI:10.1002/pro.5097
摘要

Abstract Disulfide bonds, covalently formed by sulfur atoms in cysteine residues, play a crucial role in protein folding and structure stability. Considering their significance, artificial disulfide bonds are often introduced to enhance protein thermostability. Although an increasing number of tools can assist with this task, significant amounts of time and resources are often wasted owing to inadequate consideration. To enhance the accuracy and efficiency of designing disulfide bonds for protein thermostability improvement, we initially collected disulfide bond and protein thermostability data from extensive literature sources. Thereafter, we extracted various sequence‐ and structure‐based features and constructed machine‐learning models to predict whether disulfide bonds can improve protein thermostability. Among all models, the neighborhood context model based on the Adaboost‐DT algorithm performed the best, yielding “area under the receiver operating characteristic curve” and accuracy scores of 0.773 and 0.714, respectively. Furthermore, we also found AlphaFold2 to exhibit high superiority in predicting disulfide bonds, and to some extent, the coevolutionary relationship between residue pairs potentially guided artificial disulfide bond design. Moreover, several mutants of imine reductase 89 (IR89) with artificially designed thermostable disulfide bonds were experimentally proven to be considerably efficient for substrate catalysis. The SS‐bond data have been integrated into an online server, namely, ThermoLink, available at guolab.mpu.edu.mo/thermoLink .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助斯巴达采纳,获得10
刚刚
Jayway发布了新的文献求助10
刚刚
浮游应助王炸炸采纳,获得10
刚刚
1秒前
小鱼儿发布了新的文献求助10
2秒前
凡F发布了新的文献求助10
2秒前
丘比特应助Cecilia采纳,获得10
2秒前
Lynn发布了新的文献求助20
2秒前
斯文败类应助复杂灵萱采纳,获得10
3秒前
外向纸飞机完成签到,获得积分10
3秒前
姜叠恒完成签到,获得积分10
4秒前
ll发布了新的文献求助10
4秒前
4秒前
April完成签到,获得积分10
4秒前
葉落葉飄完成签到,获得积分10
5秒前
Huang_being完成签到,获得积分10
5秒前
5秒前
春天游泳发布了新的文献求助10
5秒前
淡定乐荷完成签到,获得积分10
5秒前
6秒前
6秒前
共享精神应助尹恩惠采纳,获得30
6秒前
hxy发布了新的文献求助10
6秒前
Hello应助小马驹采纳,获得10
6秒前
7秒前
7秒前
科研通AI2S应助Lynn采纳,获得20
8秒前
9秒前
9秒前
wanci应助野性的懿轩采纳,获得10
9秒前
9秒前
李哈哈完成签到,获得积分10
9秒前
9秒前
10秒前
yb发布了新的文献求助10
10秒前
禹城完成签到,获得积分10
10秒前
11秒前
浮游应助王鹏采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988550
求助须知:如何正确求助?哪些是违规求助? 4237967
关于积分的说明 13201204
捐赠科研通 4031812
什么是DOI,文献DOI怎么找? 2205890
邀请新用户注册赠送积分活动 1217227
关于科研通互助平台的介绍 1135383