ThermoLink: Bridging disulfide bonds and enzyme thermostability through database construction and machine learning prediction

热稳定性 化学 蛋白质二硫键异构酶 半胱氨酸 共价键 蛋白质折叠 二硫键 组合化学 生物化学 有机化学
作者
Ran Xu,Qican Pan,Guoliang Zhu,Yilin Ye,Minghui Xin,Zechen Wang,Sheng Wang,Weifeng Li,Yanjie Wei,Jingjing Guo,Liangzhen Zheng
出处
期刊:Protein Science [Wiley]
卷期号:33 (9) 被引量:1
标识
DOI:10.1002/pro.5097
摘要

Abstract Disulfide bonds, covalently formed by sulfur atoms in cysteine residues, play a crucial role in protein folding and structure stability. Considering their significance, artificial disulfide bonds are often introduced to enhance protein thermostability. Although an increasing number of tools can assist with this task, significant amounts of time and resources are often wasted owing to inadequate consideration. To enhance the accuracy and efficiency of designing disulfide bonds for protein thermostability improvement, we initially collected disulfide bond and protein thermostability data from extensive literature sources. Thereafter, we extracted various sequence‐ and structure‐based features and constructed machine‐learning models to predict whether disulfide bonds can improve protein thermostability. Among all models, the neighborhood context model based on the Adaboost‐DT algorithm performed the best, yielding “area under the receiver operating characteristic curve” and accuracy scores of 0.773 and 0.714, respectively. Furthermore, we also found AlphaFold2 to exhibit high superiority in predicting disulfide bonds, and to some extent, the coevolutionary relationship between residue pairs potentially guided artificial disulfide bond design. Moreover, several mutants of imine reductase 89 (IR89) with artificially designed thermostable disulfide bonds were experimentally proven to be considerably efficient for substrate catalysis. The SS‐bond data have been integrated into an online server, namely, ThermoLink, available at guolab.mpu.edu.mo/thermoLink .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长隆完成签到 ,获得积分10
1秒前
1秒前
852应助YukiXu采纳,获得10
2秒前
2秒前
jijizz发布了新的文献求助10
2秒前
yyyyy发布了新的文献求助10
2秒前
zhappy发布了新的文献求助20
2秒前
3秒前
稳重的八宝粥完成签到 ,获得积分10
4秒前
4秒前
xx关闭了xx文献求助
4秒前
5秒前
7秒前
8秒前
su发布了新的文献求助10
8秒前
小马甲应助鳗鱼灵寒采纳,获得10
8秒前
calbee发布了新的文献求助10
9秒前
lalala发布了新的文献求助10
10秒前
10秒前
张辰12536完成签到,获得积分10
11秒前
12秒前
程琳发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
88完成签到,获得积分10
13秒前
我是站长才怪应助谭谨川采纳,获得10
13秒前
1233发布了新的文献求助10
14秒前
bismarck7完成签到,获得积分10
14秒前
14秒前
14秒前
田様应助淡淡采白采纳,获得10
14秒前
赖道之发布了新的文献求助10
15秒前
calbee完成签到,获得积分10
15秒前
15秒前
和谐白云完成签到,获得积分10
16秒前
16秒前
16秒前
王w发布了新的文献求助10
17秒前
yyyyy完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808