Grain storage temperature prediction based on chaos and enhanced RBF neural network

混沌(操作系统) 人工神经网络 计算机科学 数据挖掘 人工智能 计算机安全
作者
Fuyan Sun,Chunyan Gong,Zongwang Lyu
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-74120-1
摘要

Grain storage has very strict temperature requirements. Aiming at the problems of nonlinear characteristics and poor prediction accuracy of temperature parameters in grain storage, a combination of chaos theory and enhanced radial basis neural network is proposed as a temperature prediction model for grain storage (C-ERBF). The model first determines the embedding dimension and time delay of the grain storage temperature sequence using chaos theory. It then calculates the Lyapunov exponent to confirm its chaotic properties and reconstructs the sequence in the phase space to extract the hidden dynamic information and structure behind the sequence. Furthermore, the q-Normalized Least Mean Square Fourth (qXE-NLMF) algorithm is designed to enhance the radial basis function (RBF) neural network model for weight updating, to improve its prediction accuracy, and to accelerate the training speed of the model. As verified by the simulation experiments of Mackey-Glass chaotic time series prediction, the enhanced RBF (ERBF) network has faster convergence speed and lower steady-state error compared to the traditional RBF network. Finally, the optimized dataset from chaos theory is input into the model to achieve accurate predictions of grain storage temperature series. The experimental results show that the proposed C-ERBF model has higher prediction accuracy compared to other time series prediction methods. It can realize the grain pile temperature in advance, and take control measures in advance. This proactive approach significantly reduces the consumption of stored grain and prevents issues before they arise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
yuyu发布了新的文献求助30
2秒前
3秒前
yolo完成签到,获得积分10
3秒前
5秒前
orixero应助瞬间de回眸采纳,获得10
5秒前
7秒前
7秒前
7秒前
7秒前
迅速思萱完成签到 ,获得积分10
7秒前
zhan完成签到,获得积分20
8秒前
xibei完成签到 ,获得积分10
10秒前
zhan发布了新的文献求助10
11秒前
雪山飞龙发布了新的文献求助20
12秒前
12秒前
接点私活发布了新的文献求助10
12秒前
涵霸天发布了新的文献求助10
12秒前
zz完成签到 ,获得积分10
13秒前
14秒前
14秒前
直率无春完成签到,获得积分10
15秒前
Lyj123发布了新的文献求助10
18秒前
丫逊发布了新的文献求助10
19秒前
Casey完成签到 ,获得积分10
19秒前
20秒前
接点私活完成签到,获得积分10
21秒前
22秒前
温暖发布了新的文献求助10
23秒前
李健的小迷弟应助Mrivy采纳,获得10
27秒前
电池搬砖工完成签到 ,获得积分10
29秒前
炬火发布了新的文献求助10
29秒前
30秒前
古藤完成签到 ,获得积分10
32秒前
鱼鱼发布了新的文献求助10
34秒前
joy发布了新的文献求助10
34秒前
温暖完成签到,获得积分20
35秒前
慕青应助科研轮回采纳,获得10
35秒前
科研通AI2S应助kuzzi采纳,获得10
37秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3383463
求助须知:如何正确求助?哪些是违规求助? 2997749
关于积分的说明 8776218
捐赠科研通 2683301
什么是DOI,文献DOI怎么找? 1469598
科研通“疑难数据库(出版商)”最低求助积分说明 679480
邀请新用户注册赠送积分活动 671756