Tail variance and confidence of using tail conditional expectation: analytical representation, capital adequacy, and asymptotics

数学 计量经济学 代表(政治) 差异(会计) 条件方差 置信区间 统计 条件期望 ARCH模型 经济 政治学 波动性(金融) 政治 会计 法学
作者
Jun Duan,Zinoviy Landsman,Jinping Yao
出处
期刊:Advances in Applied Probability [Cambridge University Press]
卷期号:: 1-25
标识
DOI:10.1017/apr.2024.34
摘要

Abstract In this paper, we explore the applications of Tail Variance (TV) as a measure of tail riskiness and the confidence level of using Tail Conditional Expectation (TCE)-based risk capital. While TCE measures the expected loss of a risk that exceeds a certain threshold, TV measures the variability of risk along its tails. We first derive analytical formulas of TV and TCE for a large variety of probability distributions. These formulas are useful instruments for relevant research works on tail risk measures. We then propose a distribution-free approach utilizing TV to estimate the lower bounds of the confidence level of using TCE-based risk capital. In doing so, we introduce sharpened conditional probability inequalities, which halve the bounds of conventional Markov and Cantelli inequalities. Such an approach is easy to implement. We further investigate the characterization of tail risks by TV through an exploration of TV’s asymptotics. A distribution-free limit formula is derived for the asymptotics of TV. To further investigate the asymptotic properties, we consider two broad distribution families defined on tails, namely, the polynomial-tailed distributions and the exponential-tailed distributions. The two distribution families are found to exhibit an asymptotic equivalence between TV and the reciprocal square of the hazard rate. We also establish asymptotic relationships between TCE and VaR for the two families. Our asymptotic analysis contributes to the existing research by unifying the asymptotic expressions and the convergence rate of TV for Student-t distributions, exponential distributions, and normal distributions, which complements the discussion on the convergence rate of univariate cases in [28]. To show the usefulness of our results, we present two case studies based on real data from the industry. We first show how to use conditional inequalities to assess the confidence of using TCE-based risk capital for different types of insurance businesses. Then, for financial data, we provide alternative evidence for the relationship between the data frequency and the tail categorization by the asymptotics of TV.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸭鸭发布了新的文献求助10
1秒前
1秒前
1秒前
gjww应助学不可以已采纳,获得10
2秒前
onionnnn完成签到,获得积分10
4秒前
5秒前
Trini发布了新的文献求助10
5秒前
吕易巧发布了新的文献求助10
5秒前
小马甲应助耶格尔医生采纳,获得10
5秒前
6秒前
6秒前
7秒前
个性凡儿完成签到,获得积分10
8秒前
木子李发布了新的文献求助10
8秒前
Jasper应助未晞采纳,获得10
8秒前
9秒前
深情安青应助鸭鸭采纳,获得10
10秒前
Young完成签到,获得积分10
10秒前
Wang发布了新的文献求助10
10秒前
Orange应助暴躁的信封采纳,获得10
11秒前
JJ发布了新的文献求助10
13秒前
香蕉觅云应助正直的西牛采纳,获得10
18秒前
19秒前
三德完成签到,获得积分10
19秒前
一蓑烟雨任平生完成签到,获得积分0
19秒前
1257应助cjn1113采纳,获得10
20秒前
深情安青应助111111111111111采纳,获得10
20秒前
strawberry完成签到,获得积分10
21秒前
22秒前
未晞发布了新的文献求助10
22秒前
爆米花应助Wang采纳,获得10
22秒前
huyulele完成签到,获得积分10
23秒前
23秒前
科研通AI2S应助三德采纳,获得10
24秒前
24秒前
25秒前
斯文败类应助JJ采纳,获得10
27秒前
许鑫蓁发布了新的文献求助10
27秒前
znchick完成签到,获得积分10
28秒前
28秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3087701
求助须知:如何正确求助?哪些是违规求助? 2740311
关于积分的说明 7558701
捐赠科研通 2390102
什么是DOI,文献DOI怎么找? 1267561
科研通“疑难数据库(出版商)”最低求助积分说明 613733
版权声明 598613