Deep learning-based multimodal spatial transcriptomics analysis for cancer

精密医学 深度学习 卷积神经网络 人工智能 数据集成 计算机科学 个性化医疗 机器学习 计算生物学 数据科学 生物信息学 医学 生物 数据挖掘 病理
作者
Pankaj Rajdeo,Bruce J. Aronow,V. B. Surya Prasath
出处
期刊:Advances in Cancer Research [Elsevier BV]
卷期号:: 1-38
标识
DOI:10.1016/bs.acr.2024.08.001
摘要

The advent of deep learning (DL) and multimodal spatial transcriptomics (ST) has revolutionized cancer research, offering unprecedented insights into tumor biology. This book chapter explores the integration of DL with ST to advance cancer diagnostics, treatment planning, and precision medicine. DL, a subset of artificial intelligence, employs neural networks to model complex patterns in vast datasets, significantly enhancing diagnostic and treatment applications. In oncology, convolutional neural networks excel in image classification, segmentation, and tumor volume analysis, essential for identifying tumors and optimizing radiotherapy. The chapter also delves into multimodal data analysis, which integrates genomic, proteomic, imaging, and clinical data to offer a holistic understanding of cancer biology. Leveraging diverse data sources, researchers can uncover intricate details of tumor heterogeneity, microenvironment interactions, and treatment responses. Examples include integrating MRI data with genomic profiles for accurate glioma grading and combining proteomic and clinical data to uncover drug resistance mechanisms. DL's integration with multimodal data enables comprehensive and actionable insights for cancer diagnosis and treatment. The synergy between DL models and multimodal data analysis enhances diagnostic accuracy, personalized treatment planning, and prognostic modeling. Notable applications include ST, which maps gene expression patterns within tissue contexts, providing critical insights into tumor heterogeneity and potential therapeutic targets. In summary, the integration of DL and multimodal ST represents a paradigm shift towards more precise and personalized oncology. This chapter elucidates the methodologies and applications of these advanced technologies, highlighting their transformative potential in cancer research and clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意的冰双完成签到 ,获得积分10
2秒前
陈彦彬发布了新的文献求助10
4秒前
酷波er应助冬里一把火采纳,获得10
4秒前
sanki关注了科研通微信公众号
4秒前
9秒前
lcr发布了新的文献求助10
12秒前
药猜猜麻完成签到,获得积分10
13秒前
asia完成签到 ,获得积分10
13秒前
yu完成签到 ,获得积分10
21秒前
茂茂发布了新的文献求助10
24秒前
yhw完成签到 ,获得积分20
25秒前
盆盆完成签到 ,获得积分10
26秒前
Lyn完成签到 ,获得积分10
28秒前
孤独巡礼完成签到,获得积分10
28秒前
30秒前
那地方完成签到,获得积分10
30秒前
小王啵啵完成签到 ,获得积分10
31秒前
suoyu发布了新的文献求助10
33秒前
小许完成签到 ,获得积分10
33秒前
sanki发布了新的文献求助10
35秒前
李多意发布了新的文献求助10
41秒前
科研通AI6.2应助cc采纳,获得10
41秒前
Yuuki完成签到,获得积分10
42秒前
小二郎应助suoyu采纳,获得10
43秒前
mhy完成签到 ,获得积分10
44秒前
研友_Z30Kz8完成签到,获得积分10
45秒前
46秒前
48秒前
AAAA发布了新的文献求助10
50秒前
cc发布了新的文献求助10
52秒前
55秒前
lcr完成签到 ,获得积分10
57秒前
Jasper应助程昱采纳,获得10
57秒前
58秒前
科研通AI6.1应助AAAA采纳,获得10
1分钟前
leona完成签到 ,获得积分10
1分钟前
1分钟前
赵雪莹发布了新的文献求助10
1分钟前
1分钟前
小小康康发布了新的文献求助10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852126
求助须知:如何正确求助?哪些是违规求助? 6276113
关于积分的说明 15627658
捐赠科研通 4968034
什么是DOI,文献DOI怎么找? 2678871
邀请新用户注册赠送积分活动 1623127
关于科研通互助平台的介绍 1579506