Artificial Intelligence System Combining With Infrared Thermography and Visible Image for Abnormal Temperature Detection and Floor Material Identification

热成像 卷积神经网络 人工智能 过热(电) 鉴定(生物学) 计算机科学 块(置换群论) 计算机视觉 模式识别(心理学) 遥感 红外线的 工程类 地质学 光学 电气工程 数学 物理 植物 生物 几何学
作者
Tsung‐Yi Chen,Ya-Yun Huang,Yu-Chieh Chu,Shih‐Lun Chen,Xinyu Chen,Peichen Wu,Wei‐Chen Tu,Patricia Angela R. Abu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (24): 42181-42194
标识
DOI:10.1109/jsen.2024.3439362
摘要

Thermographic imaging has gained significant use in recent years, particularly during the epidemic, including its application in architecture for damage detection on archeological monuments through temperature analysis. The noninvasive nature of thermographic imaging, along with its ability to visualize temperature levels, allows for problem identification while preserving the building's structure. The integration of artificial intelligence (AI) further enhances its potential applications. This study aims to propose an automated inspection system using a convolutional neural network (CNN) for analyzing abnormal floor blocks and their materials. A team of academicians with more than seven years of expertise in monument preservation gathered the imaging data for this investigation. They were in charge of collecting thermal imaging photographs of floors at significant monuments and aiding in the identification of overheating data and floor tile types. This study will propose three types of CNN models for recognition: one for identifying floors in visible images, one for detecting abnormal temperatures in thermal images, and one for recognizing materials in visible images. The block with abnormal temperature radiations can be determined from the floor by analyzing elevated temperatures. Subsequently, analyzing materials in abnormal block can efficiently identify problematic materials. The identification accuracy rate of this study is as high as 99.16%. Compared to the efficiency of professionals identifying 100 images, this research increases efficiency by approximately 99.92%, which is an amazing improvement. These functions increase the practicality of restoration efforts, improve restoration quality and efficiency, and contribute to academic research on ancient monument preservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
liuyan0316发布了新的文献求助10
6秒前
peterlee发布了新的文献求助10
7秒前
8秒前
9秒前
10秒前
11秒前
12秒前
kk发布了新的文献求助10
13秒前
科研通AI2S应助拖拖采纳,获得10
15秒前
gungnir发布了新的文献求助10
16秒前
爱健身的小海豹完成签到,获得积分10
18秒前
充电宝应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得10
18秒前
18秒前
Noora应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
19秒前
打打应助mmyyff采纳,获得10
20秒前
22秒前
23秒前
萝卜干完成签到,获得积分10
25秒前
辞却完成签到,获得积分10
26秒前
FashionBoy应助xrrrr采纳,获得10
27秒前
科研通AI2S应助小天采纳,获得10
28秒前
XingLinYuan发布了新的文献求助10
28秒前
gungnir完成签到,获得积分20
30秒前
洛洛发布了新的文献求助10
30秒前
angel完成签到,获得积分10
33秒前
拾年发布了新的文献求助10
33秒前
34秒前
qs完成签到,获得积分10
36秒前
36秒前
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356590
求助须知:如何正确求助?哪些是违规求助? 2980171
关于积分的说明 8693302
捐赠科研通 2661747
什么是DOI,文献DOI怎么找? 1457350
科研通“疑难数据库(出版商)”最低求助积分说明 674761
邀请新用户注册赠送积分活动 665614