Connector hubs in semantic network contribute to creative thinking.

心理学 认知心理学 语义网络 认知科学 创造力 沟通 社会心理学 人工智能 计算机科学
作者
Li He,Yoed N. Kenett,Kaixiang Zhuang,Jiangzhou Sun,Qunlin Chen,Jiang Qiu
出处
期刊:Journal of Experimental Psychology: General
标识
DOI:10.1037/xge0001675
摘要

Semantic memory offers a rich repository of raw materials (e.g., various concepts and connections between concepts) for creative thinking, represented as a semantic network. Similar to other networks, the semantic network exhibits a modular structure characterized by modules with dense internal connections and sparse connections between them. This organizational principle facilitates the routine storage and retrieval of information but may impede creativity. The present study investigated the effect of hub concepts with varying connection patterns on creative thinking from the perspective of a modular structured semantic network. By analyzing a large-scale semantic network, connector hubs (C-hubs) and provincial hubs (P-hubs) were identified based on their intra- and intermodule connections. These hubs were used as cue words in the alternative uses task, a widely used measure of creative thinking. Across four experiments, behavioral and neural evidence indicated that C-hubs facilitate the generation of more novel and remote ideas compared to P-hubs. However, this effect is predominantly observed in the early stage of the creative thinking process, involving changes in brain activation and functional connectivity in core regions of the default mode network and the frontoparietal network, including the dorsolateral prefrontal cortex, angular gyrus, and precuneus. Neural findings suggest that the superior performance of C-hubs relies on stronger interactions between automatic spreading activation, controlled semantic retrieval, and attentional regulation of salient information. These results provide insight into how concepts with varying semantic connection patterns facilitate and constrain different stages of the creative thinking process through the modular structure of semantic network. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿芙乐尔完成签到 ,获得积分10
2秒前
franklin发布了新的文献求助10
2秒前
3秒前
在水一方应助小赞采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
搬砖工人发布了新的文献求助10
4秒前
GuoJJ完成签到 ,获得积分10
4秒前
Panchael完成签到,获得积分10
5秒前
科目三应助puzhongjiMiQ采纳,获得10
5秒前
科目三应助puzhongjiMiQ采纳,获得10
5秒前
1111完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助puzhongjiMiQ采纳,获得10
6秒前
SYLH应助puzhongjiMiQ采纳,获得10
6秒前
星辰大海应助puzhongjiMiQ采纳,获得10
6秒前
651应助puzhongjiMiQ采纳,获得10
6秒前
icecream应助puzhongjiMiQ采纳,获得10
6秒前
icecream应助puzhongjiMiQ采纳,获得10
6秒前
科研通AI2S应助puzhongjiMiQ采纳,获得10
6秒前
7秒前
7秒前
KK发布了新的文献求助20
8秒前
8秒前
LK完成签到,获得积分10
8秒前
哈兰完成签到 ,获得积分10
8秒前
8秒前
甜蜜的马里奥完成签到,获得积分10
9秒前
小阿博完成签到,获得积分10
10秒前
玄月发布了新的文献求助10
11秒前
JerryZ发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
慕青应助秋水采纳,获得30
12秒前
charles发布了新的文献求助10
13秒前
MXiV完成签到,获得积分10
14秒前
14秒前
15秒前
忙碌的数学人完成签到,获得积分10
15秒前
周舟完成签到 ,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662487
求助须知:如何正确求助?哪些是违规求助? 3223261
关于积分的说明 9750825
捐赠科研通 2933130
什么是DOI,文献DOI怎么找? 1605938
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743