SLC17A1/3 transporters mediate renal excretion of Lac-Phe in mice and humans
排泄
运输机
肾脏生理学
ATP结合盒运输机
生物
肾
化学
遗传学
内分泌学
基因
作者
Veronica L. Li,Shuke Xiao,Pascal Schlosser,Nora Scherer,Amanda L. Wiggenhorn,Jan Spaas,Alan Sheng-Hwa Tung,Edward D. Karoly,Anna Köttgen,Jonathan Z. Long
N-lactoyl-phenylalanine (Lac-Phe) is a lactate-derived metabolite that suppresses food intake and body weight. Little is known about the mechanisms that mediate Lac-Phe transport across cell membranes. Here we identify SLC17A1 and SLC17A3, two kidney-restricted plasma membrane-localized solute carriers, as physiologic urine Lac-Phe transporters. In cell culture, SLC17A1/3 exhibit high Lac-Phe efflux activity. In humans, levels of Lac-Phe in urine exhibit a strong genetic association with the SLC17A1-4 locus. Urine Lac-Phe levels are increased following a Wingate sprint test. In mice, genetic ablation of either SLC17A1 or SLC17A3 reduces urine Lac-Phe levels. Despite these differences, both knockout strains have normal blood Lac-Phe and body weights, demonstrating SLC17A1/3-dependent de-coupling of urine and plasma Lac-Phe pools. Together, these data establish SLC17A1/3 family members as the physiologic urine Lac-Phe transporters and uncover a biochemical pathway for the renal excretion of this signaling metabolite. The lactate metabolite N-lactoyl-phenylalanine (Lac-Phe) plays a role in suppressing food intake and body weight. Here, the authors identify kidney transporters responsible for the renal excretion of Lac-Phe. This discovery highlights a pathway for Lac-Phe regulation in mice and humans.