Assessment of Wine Quality, Traceability and Detection of Grapes Wine, Detection of Harmful Substances in Alcohol and Liquor Composition Analysis

葡萄酒 化学 食品科学 葡萄酒的陈酿 葡萄酒故障 杂醇油 有机化学 发酵 生物化学 酿酒酵母 酵母 酿酒酵母
作者
Mohamad Hesam Shahrajabian,Wenli Sun
出处
期刊:Letters in Drug Design & Discovery [Bentham Science Publishers]
卷期号:21 (8): 1377-1399 被引量:10
标识
DOI:10.2174/1570180820666230228115450
摘要

Abstract: Wine production is the result of the interaction between various strains and grapes, and its good quality is also affected by many factors. Aureobasidium, Cladosporium, Candida, Filobasidium, Hanseniaspora, Hannaella, Saccharomyces, Wickerhamomyce, Alternaria, Starmerella, Acetobacter, Papiliotrema, Bradyrhizobium, Leuconostoclia, Gluconobacter, Comamonas, and Massilia, are significantly correlated with changes of physiological properties and volatile compounds. Phenolic compounds, shortened as phenolics, are a vital parameter to the quality of wine, and wine phenolics include two main families: non-flavonoids, which consist of hydroxybenzoic acids (HBAs), hydroxycinnamic acids (HCAs), and stilbenes, and flavonoids, comprising flavonols, flavan-3-ols, and anthocyanins. Wine quality is determined by either sensory tests or physicochemical tests, and the latter analyse the wine’s chemical parameters such as sugar, pH, and alcohol level. The most important constituents found in wine are Terpenes; Aldehydes, Pyrazines, Esters, Ketones and diketones, Mercaptans, and Lactones. In wine quality analysis, the most chief variables are volatile acidity, alcohol, sulphates, citric acid, density, total sulfur dioxide, chlorides, pH, fixed acidity, free sulfur dioxide, and residual sugar. Some classifiers utilized for wine quality prediction in machine learning are: k-Nearest Neighbor (KNN), Random Forest, Decision Tree, Support Vector Machines, Linear Regression, Stochastic Gradient Descent, Artificial Neural Networks (ANN), and Naive Bayes. This article is aimed to review wine quality parameters, detection and traceability of wine, and detection of harmful substances in alcohol and liquor composition analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花猪1989完成签到 ,获得积分10
2秒前
一三二五七完成签到 ,获得积分0
3秒前
HY完成签到,获得积分10
4秒前
荔枝完成签到 ,获得积分10
5秒前
sunnyqqz完成签到,获得积分10
14秒前
耍酷的指甲油完成签到,获得积分10
23秒前
杨一完成签到 ,获得积分10
24秒前
万能图书馆应助热潮采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
28秒前
隐形曼青应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
36456657应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
28秒前
英俊的铭应助科研通管家采纳,获得50
28秒前
研友_VZG7GZ应助科研通管家采纳,获得10
28秒前
28秒前
36456657应助科研通管家采纳,获得10
28秒前
Jasper应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
和平使命应助科研通管家采纳,获得10
28秒前
guo完成签到,获得积分0
29秒前
不甜完成签到 ,获得积分10
32秒前
无为完成签到,获得积分10
32秒前
33秒前
陌上尘开完成签到 ,获得积分10
36秒前
一味愚完成签到,获得积分10
37秒前
行萱完成签到 ,获得积分10
37秒前
38秒前
热潮发布了新的文献求助10
38秒前
Jeason完成签到 ,获得积分10
39秒前
愉快若剑发布了新的文献求助30
43秒前
离枝完成签到 ,获得积分10
44秒前
追寻的冬寒完成签到 ,获得积分10
44秒前
逸灵素完成签到 ,获得积分10
47秒前
科研通AI5应助什玖采纳,获得30
47秒前
松子的ee完成签到 ,获得积分10
52秒前
奔奔完成签到 ,获得积分10
54秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671358
求助须知:如何正确求助?哪些是违规求助? 3228175
关于积分的说明 9778776
捐赠科研通 2938469
什么是DOI,文献DOI怎么找? 1610028
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 736020