摘要
Photoluminescent-carbon nanoparticles (PL-CNPs) are a new class of materials that received immense interest among researchers due to their distinct characteristics, including photoluminescence, high surface-to-volume ratio, low cost, ease of synthesis, high quantum yield, and biocompatibility. By exploiting these outstanding properties, many studies have been reported on its utility as sensors, photocatalysts, probes for bio-imaging, and optoelectronics applications. From clinical applications to point-of-care test devices, drug loading to tracking of drug delivery, and other research innovations demonstrated PL-CNPs as an emerging material that could substitute conventional approaches. However, some of the PL-CNPs have poor PL properties and selectivity due to the presence of impurities (e.g., molecular fluorophores) and unfavourable surface charges by the passivation molecules, which impede their applications in many fields. To address these issues, many researchers have been paying great attention to developing new PL-CNPs with different composite combinations to achieve high PL properties and selectivity. Herein, we thoroughly discussed the recent development of various synthetic strategies employed to prepare PL-CNPs, doping effects, photostability, biocompatibility, and applications in sensing, bioimaging, and drug delivery fields. Moreover, the review discussed the limitations, future direction, and perspectives of PL-CNPs in possible potential applications.