MPTP公司
神经退行性变
帕金森病
帕金森病
肠-脑轴
多巴胺能
生物
氧化应激
神经科学
内分泌学
病理
多巴胺
肠道菌群
医学
疾病
免疫学
作者
Dionísio Pedro Amorim Neto,João Vitor Pereira de Godoy,Katiane Tostes,Beatriz Pelegrini Bosque,Paulla Vieira Rodrigues,Silvana A. Rocco,Maurício L. Sforça,Matheus de Castro Fonseca
标识
DOI:10.1016/j.neuroscience.2023.06.010
摘要
Parkinson's Disease is a synucleinopathy that primarily affects the dopaminergic cells of the central nervous system, leading to motor and gastrointestinal disturbances. However, intestinal peripheral neurons undergo a similar neurodegeneration process, marked by α-synuclein (αSyn) accumulation and loss of mitochondrial homeostasis. We investigated the metabolic alterations in different biometrics that compose the gut-brain axis (blood, brain, large intestine, and feces) in an MPTP-induced mouse model of sporadic Parkinson's Disease. Animals received escalating administration of MPTP. Tissues and fecal pellets were collected, and the metabolites were identified through the untargeted Nuclear Magnetic Resonance spectroscopic (1H NMR) technique. We found differences in many metabolites from all the tissues evaluated. The differential expression of metabolites in these samples mainly reflects inflammatory aspects, cytotoxicity, and mitochondrial impairment (oxidative stress and energy metabolism) in the animal model used. The direct evaluation of fecal metabolites revealed changes in several classes of metabolites. This data reinforces previous studies showing that Parkinson’s disease is associated with metabolic perturbation not only in brain-related tissues, but also in periphery structures such as the gut. In addition, the evaluation of the microbiome and metabolites from gut and feces emerge as promising sources of information for understanding the evolution and progression of sporadic Parkinson's Disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI