Latest Trends in Modelling Forest Ecosystems: New Approaches or Just New Methods?

过程(计算) 计算机科学 数据科学 时间尺度 领域(数学) 森林生态学 比例(比率) 森林动态 森林经营 环境资源管理 管理科学 生态学 生态系统 地理 环境科学 工程类 数学 地图学 纯数学 生物 操作系统
作者
Juan A. Blanco,Yueh‐Hsin Lo
出处
期刊:Current forestry reports [Springer Nature]
卷期号:9 (4): 219-229 被引量:12
标识
DOI:10.1007/s40725-023-00189-y
摘要

Abstract Purpose of Review Forest models are becoming essential tools in forest research, management, and policymaking but currently are under deep transformation. In this review of the most recent literature (2018–2022), we aim to provide an updated general view of the main topics currently attracting the efforts of forest modelers, the trends already in place, and some of the current and future challenges that the field will face. Recent Findings Four major topics attracting most of on current modelling efforts: data acquisition, productivity estimation, ecological pattern predictions, and forest management related to ecosystem services. Although the topics may seem different, they all are converging towards integrated modelling approaches by the pressure of climate change as the major coalescent force, pushing current research efforts into integrated mechanistic, cross-scale simulations of forest functioning and structure. Summary We conclude that forest modelling is experiencing an exciting but challenging time, due to the combination of new methods to easily acquire massive amounts of data, new techniques to statistically process such data, and refinements in mechanistic modelling that are incorporating higher levels of ecological complexity and breaking traditional barriers in spatial and temporal scales. However, new available data and techniques are also creating new challenges. In any case, forest modelling is increasingly acknowledged as a community and interdisciplinary effort. As such, ways to deliver simplified versions or easy entry points to models should be encouraged to integrate non-modelers stakeholders into the modelling process since its inception. This should be considered particularly as academic forest modelers may be increasing the ecological and mathematical complexity of forest models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助lyt采纳,获得10
1秒前
WJ发布了新的文献求助10
2秒前
3秒前
dbq完成签到 ,获得积分10
3秒前
Owen应助reck采纳,获得10
5秒前
王淳完成签到 ,获得积分10
5秒前
6秒前
7秒前
高高的天亦完成签到 ,获得积分10
8秒前
追寻书白完成签到,获得积分20
9秒前
晚街听风完成签到 ,获得积分10
10秒前
10秒前
感觉他香香的完成签到 ,获得积分10
11秒前
11秒前
牛牛要当院士喽完成签到,获得积分10
11秒前
结实的老虎完成签到,获得积分10
13秒前
坚强丹雪完成签到,获得积分10
15秒前
17秒前
19秒前
WZ0904发布了新的文献求助10
21秒前
狂野静曼完成签到 ,获得积分10
22秒前
武映易完成签到 ,获得积分10
24秒前
zzz发布了新的文献求助10
25秒前
26秒前
大蒜味酸奶钊完成签到 ,获得积分10
26秒前
鱼宇纸完成签到 ,获得积分10
26秒前
LEE完成签到,获得积分20
26秒前
26秒前
Ava应助无限的绿真采纳,获得10
28秒前
小马甲应助xiongdi521采纳,获得10
28秒前
科研通AI5应助陶醉觅夏采纳,获得200
31秒前
憨鬼憨切发布了新的文献求助10
31秒前
31秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
33秒前
34秒前
35秒前
hh应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
Ava应助科研通管家采纳,获得10
35秒前
Eva完成签到,获得积分10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849