Density variation-based background filtering algorithm for low-channel roadside lidar data

激光雷达 计算机科学 点云 算法 频道(广播) 离群值 数据库扫描 航程(航空) 遥感 人工智能 聚类分析 地质学 相关聚类 材料科学 复合材料 树冠聚类算法 计算机网络
作者
Ciyun Lin,Hongli Zhang,Bowen Gong,Dayong Wu,Yijia Wang
出处
期刊:Optics and Laser Technology [Elsevier BV]
卷期号:158: 108852-108852 被引量:3
标识
DOI:10.1016/j.optlastec.2022.108852
摘要

Light Detection and Range (LiDAR) sensor is considered will be widely deployed in the roadside infrastructure if massive production in the near future, as it can extract High-Resolution Micro-level Traffic Data (HRMTD) which is a cornerstone in Intelligent Transportation Systems (ITS) applications. In the field application, background filtering is the first and foremost step to accelerate HRMTD extraction efficiency and improve extraction precision. In this paper, we proposed a novel background filtering algorithm based on density variation for low-channel roadside LiDAR. First, we segmented the detected area into small cubes and analyzed the character of LiDAR points in the detected area by calculating the density variation of the point cloud in continuous time. Second, we constructed an index to distinguish the road user passing area and removed outliers through the DBSCAN algorithm. Third, we excluded the LiDAR points that were not in the passing area. In the experiments, object points obtained percentage, background points excluded percentage, and effective points percentage were used to evaluate the accuracy of background filtering methods. Compared to the state-of-the-art methods, our algorithm has higher filtering accuracy and can perform well in complex sites in real-time. Besides, the proposed algorithm has the best stability, reflecting that the accuracy of the proposed methods does not decrease significantly as distance increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hhh发布了新的文献求助10
5秒前
是真的完成签到 ,获得积分10
5秒前
Eber完成签到,获得积分20
6秒前
6秒前
llll发布了新的文献求助10
6秒前
刘子完成签到,获得积分10
7秒前
SYLH应助小景采纳,获得10
7秒前
yyy完成签到 ,获得积分10
8秒前
Gesj发布了新的文献求助10
9秒前
9秒前
吭吭菜菜完成签到 ,获得积分10
10秒前
姬昌发布了新的文献求助10
10秒前
miaomiao完成签到 ,获得积分10
12秒前
13秒前
苹果摇伽完成签到,获得积分10
14秒前
Harlotte完成签到 ,获得积分10
16秒前
LuciusHe完成签到,获得积分10
16秒前
liuguohua126发布了新的文献求助10
16秒前
努力成为科研大佬完成签到,获得积分10
17秒前
LeoYiS214完成签到,获得积分10
18秒前
程风破浪发布了新的文献求助10
18秒前
long完成签到,获得积分10
18秒前
温暖亦玉发布了新的文献求助10
19秒前
19秒前
Owen应助科研通管家采纳,获得10
19秒前
甜美无剑应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
19秒前
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
Lucas应助科研通管家采纳,获得50
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
年轻的路人完成签到,获得积分10
20秒前
小豆豆完成签到,获得积分10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965857
求助须知:如何正确求助?哪些是违规求助? 3511158
关于积分的说明 11156654
捐赠科研通 3245772
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268