重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Density variation-based background filtering algorithm for low-channel roadside lidar data

激光雷达 计算机科学 点云 算法 频道(广播) 离群值 数据库扫描 航程(航空) 遥感 人工智能 聚类分析 地质学 相关聚类 材料科学 复合材料 树冠聚类算法 计算机网络
作者
Ciyun Lin,Hongli Zhang,Bowen Gong,Dayong Wu,Yijia Wang
出处
期刊:Optics and Laser Technology [Elsevier]
卷期号:158: 108852-108852 被引量:12
标识
DOI:10.1016/j.optlastec.2022.108852
摘要

Light Detection and Range (LiDAR) sensor is considered will be widely deployed in the roadside infrastructure if massive production in the near future, as it can extract High-Resolution Micro-level Traffic Data (HRMTD) which is a cornerstone in Intelligent Transportation Systems (ITS) applications. In the field application, background filtering is the first and foremost step to accelerate HRMTD extraction efficiency and improve extraction precision. In this paper, we proposed a novel background filtering algorithm based on density variation for low-channel roadside LiDAR. First, we segmented the detected area into small cubes and analyzed the character of LiDAR points in the detected area by calculating the density variation of the point cloud in continuous time. Second, we constructed an index to distinguish the road user passing area and removed outliers through the DBSCAN algorithm. Third, we excluded the LiDAR points that were not in the passing area. In the experiments, object points obtained percentage, background points excluded percentage, and effective points percentage were used to evaluate the accuracy of background filtering methods. Compared to the state-of-the-art methods, our algorithm has higher filtering accuracy and can perform well in complex sites in real-time. Besides, the proposed algorithm has the best stability, reflecting that the accuracy of the proposed methods does not decrease significantly as distance increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
BY0131发布了新的文献求助10
刚刚
健忘的灵凡完成签到,获得积分10
刚刚
俏皮的钻石完成签到,获得积分10
刚刚
1秒前
深情安青应助maybe豪采纳,获得10
1秒前
王姗and帅白完成签到,获得积分10
1秒前
华仔应助GHJ采纳,获得10
1秒前
Dylan完成签到,获得积分10
2秒前
2秒前
wenx完成签到,获得积分10
2秒前
故意的冰岚完成签到,获得积分20
2秒前
搜集达人应助年糕111采纳,获得10
2秒前
YY完成签到,获得积分0
2秒前
2秒前
幽默尔蓝发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
高铭泽发布了新的文献求助10
3秒前
蒸馏水发布了新的文献求助10
3秒前
Mmmmm发布了新的文献求助10
4秒前
橙子完成签到,获得积分20
4秒前
zyl完成签到,获得积分10
4秒前
JamesPei应助泮子采纳,获得10
4秒前
Hello应助Gavin啥也不会采纳,获得10
4秒前
5秒前
熊猫小肿完成签到,获得积分10
5秒前
和谐半仙发布了新的文献求助10
5秒前
wanci应助电池博士采纳,获得10
5秒前
liuy03发布了新的文献求助10
5秒前
喜悦含莲发布了新的文献求助10
5秒前
6秒前
6秒前
梦城完成签到,获得积分10
6秒前
Lee发布了新的文献求助10
6秒前
xyy发布了新的文献求助10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567