Density variation-based background filtering algorithm for low-channel roadside lidar data

激光雷达 计算机科学 点云 算法 频道(广播) 离群值 数据库扫描 航程(航空) 遥感 人工智能 聚类分析 地质学 相关聚类 材料科学 复合材料 树冠聚类算法 计算机网络
作者
Ciyun Lin,Hongli Zhang,Bowen Gong,Dayong Wu,Yijia Wang
出处
期刊:Optics and Laser Technology [Elsevier]
卷期号:158: 108852-108852 被引量:12
标识
DOI:10.1016/j.optlastec.2022.108852
摘要

Light Detection and Range (LiDAR) sensor is considered will be widely deployed in the roadside infrastructure if massive production in the near future, as it can extract High-Resolution Micro-level Traffic Data (HRMTD) which is a cornerstone in Intelligent Transportation Systems (ITS) applications. In the field application, background filtering is the first and foremost step to accelerate HRMTD extraction efficiency and improve extraction precision. In this paper, we proposed a novel background filtering algorithm based on density variation for low-channel roadside LiDAR. First, we segmented the detected area into small cubes and analyzed the character of LiDAR points in the detected area by calculating the density variation of the point cloud in continuous time. Second, we constructed an index to distinguish the road user passing area and removed outliers through the DBSCAN algorithm. Third, we excluded the LiDAR points that were not in the passing area. In the experiments, object points obtained percentage, background points excluded percentage, and effective points percentage were used to evaluate the accuracy of background filtering methods. Compared to the state-of-the-art methods, our algorithm has higher filtering accuracy and can perform well in complex sites in real-time. Besides, the proposed algorithm has the best stability, reflecting that the accuracy of the proposed methods does not decrease significantly as distance increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UMA发布了新的文献求助10
1秒前
ho应助科研通管家采纳,获得10
3秒前
Zx_1993应助科研通管家采纳,获得100
3秒前
小青椒应助科研通管家采纳,获得150
3秒前
WB87应助科研通管家采纳,获得30
3秒前
ho应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得80
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
Zx_1993应助科研通管家采纳,获得100
4秒前
ho应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
7秒前
机灵的幻灵完成签到 ,获得积分10
7秒前
漫漫完成签到 ,获得积分10
8秒前
8秒前
结王三完成签到,获得积分10
8秒前
8秒前
cryjslong完成签到,获得积分10
8秒前
9秒前
风趣的涵柏完成签到 ,获得积分10
9秒前
pluto应助Kryptonite采纳,获得10
10秒前
RATHER发布了新的文献求助10
12秒前
往好处想完成签到,获得积分10
14秒前
落后若山发布了新的文献求助10
14秒前
伶俐的寒凡完成签到 ,获得积分10
14秒前
畅快谷蕊完成签到,获得积分10
15秒前
英吉利25发布了新的文献求助10
19秒前
隐形曼青应助哆来米采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
23秒前
23秒前
tjzbw完成签到,获得积分10
24秒前
落后若山完成签到,获得积分20
24秒前
小二郎应助踏实小蘑菇采纳,获得10
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425301
求助须知:如何正确求助?哪些是违规求助? 4539379
关于积分的说明 14167473
捐赠科研通 4456762
什么是DOI,文献DOI怎么找? 2444285
邀请新用户注册赠送积分活动 1435283
关于科研通互助平台的介绍 1412688