RRCNet: Refinement residual convolutional network for breast ultrasound images segmentation

计算机科学 分割 人工智能 残余物 卷积神经网络 模式识别(心理学) 乳腺超声检查 超声波 计算机视觉 乳腺癌 放射科 乳腺摄影术 癌症 医学 算法 内科学
作者
Gongping Chen,Yu Dai,Jianxun Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:117: 105601-105601 被引量:35
标识
DOI:10.1016/j.engappai.2022.105601
摘要

Breast ultrasound images segmentation is one of the key steps in clinical auxiliary diagnosis of breast cancer, which seriously threatens women’s health. Currently, deep learning methods have been successfully applied to breast tumors segmentation. However, blurred boundaries, heterostructure and other factors can cause serious missed detections and false detections in the segmentation results. In this paper, we developed a novel refinement residual convolutional network to segment breast tumors accurately from ultrasound images, which mainly composed of SegNet with deep supervision module, missed detection residual network and false detection residual network. In SegNet, we add six side-out deep supervision modules to guide the network to learn to predict precise segmentation masks scale-by-scale. In missed detection residual network, the receptive field provided by different dilation rates can provide more global information, which is easily lost in deep convolutional layer. The introduction of false detection and missed detection residual network can promotes the network to make more efforts on those hardly-predicted pixels to help us obtain more accurate segmentation results of the breast tumor. To evaluate the segmentation performance of the network, we compared with several state-of-the-art segmentation approaches using five quantitative metrics on two public breast datasets. Experimental results demonstrate that our method achieves the best segmentation results, which indicates that our method has better adaptability on breast tumors segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Serendipity发布了新的文献求助10
1秒前
奋斗向南发布了新的文献求助10
1秒前
笑点低机器猫完成签到,获得积分10
1秒前
xiaotingMa完成签到,获得积分10
1秒前
pp发布了新的文献求助10
2秒前
LW发布了新的文献求助10
2秒前
科研通AI6应助11采纳,获得10
2秒前
Xin关注了科研通微信公众号
3秒前
4秒前
无情念双发布了新的文献求助10
4秒前
慕青应助大神牛猪羊采纳,获得10
5秒前
ZQZ完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6应助wingmay采纳,获得10
6秒前
Gemination完成签到,获得积分10
6秒前
充电宝应助xiaotingMa采纳,获得10
6秒前
6秒前
6秒前
顾矜应助xn201120采纳,获得10
6秒前
7秒前
谁与争锋发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
小马甲应助jing122061采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
Jonathan完成签到,获得积分10
9秒前
满意的凌雪完成签到,获得积分20
9秒前
泡泡发布了新的文献求助10
10秒前
10秒前
Raymond应助橙色采纳,获得10
10秒前
幸运Q发布了新的文献求助30
11秒前
上官追命应助欣欣采纳,获得20
11秒前
11秒前
周煜锦发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661227
求助须知:如何正确求助?哪些是违规求助? 4837867
关于积分的说明 15094878
捐赠科研通 4819976
什么是DOI,文献DOI怎么找? 2579690
邀请新用户注册赠送积分活动 1533972
关于科研通互助平台的介绍 1492764