RRCNet: Refinement residual convolutional network for breast ultrasound images segmentation

计算机科学 分割 人工智能 残余物 卷积神经网络 模式识别(心理学) 乳腺超声检查 超声波 计算机视觉 乳腺癌 放射科 乳腺摄影术 癌症 医学 算法 内科学
作者
Gongping Chen,Yu Dai,Jianxun Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:117: 105601-105601 被引量:35
标识
DOI:10.1016/j.engappai.2022.105601
摘要

Breast ultrasound images segmentation is one of the key steps in clinical auxiliary diagnosis of breast cancer, which seriously threatens women’s health. Currently, deep learning methods have been successfully applied to breast tumors segmentation. However, blurred boundaries, heterostructure and other factors can cause serious missed detections and false detections in the segmentation results. In this paper, we developed a novel refinement residual convolutional network to segment breast tumors accurately from ultrasound images, which mainly composed of SegNet with deep supervision module, missed detection residual network and false detection residual network. In SegNet, we add six side-out deep supervision modules to guide the network to learn to predict precise segmentation masks scale-by-scale. In missed detection residual network, the receptive field provided by different dilation rates can provide more global information, which is easily lost in deep convolutional layer. The introduction of false detection and missed detection residual network can promotes the network to make more efforts on those hardly-predicted pixels to help us obtain more accurate segmentation results of the breast tumor. To evaluate the segmentation performance of the network, we compared with several state-of-the-art segmentation approaches using five quantitative metrics on two public breast datasets. Experimental results demonstrate that our method achieves the best segmentation results, which indicates that our method has better adaptability on breast tumors segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助April采纳,获得10
刚刚
Twonej应助褚蕴采纳,获得20
刚刚
jsdiohfsiodhg完成签到,获得积分10
1秒前
1秒前
名不虚传发布了新的文献求助10
1秒前
libra完成签到 ,获得积分10
2秒前
神勇冷亦发布了新的文献求助10
2秒前
3秒前
NexusExplorer应助Yoki采纳,获得10
3秒前
moheng完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
MaZ发布了新的文献求助10
4秒前
饺子完成签到,获得积分10
4秒前
小早完成签到,获得积分20
4秒前
4秒前
5秒前
6秒前
xiaolei001应助含蓄觅山采纳,获得10
6秒前
6秒前
7秒前
大个应助zhuqian采纳,获得10
7秒前
7秒前
moheng发布了新的文献求助10
7秒前
爱吃麻辣烫完成签到,获得积分20
8秒前
Cooper应助冷傲妙梦采纳,获得10
8秒前
李健的小迷弟应助我是AY采纳,获得10
8秒前
科研通AI6.1应助小早采纳,获得10
8秒前
lizhiqian2024发布了新的文献求助10
9秒前
现代的黄豆完成签到,获得积分10
9秒前
黄晓杰2024发布了新的文献求助10
9秒前
对对对完成签到,获得积分10
10秒前
10秒前
波罗蜜完成签到,获得积分20
10秒前
11秒前
小方发布了新的文献求助10
11秒前
11秒前
yuansou发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759707
求助须知:如何正确求助?哪些是违规求助? 5521712
关于积分的说明 15395175
捐赠科研通 4896734
什么是DOI,文献DOI怎么找? 2633863
邀请新用户注册赠送积分活动 1581925
关于科研通互助平台的介绍 1537410