RRCNet: Refinement residual convolutional network for breast ultrasound images segmentation

计算机科学 分割 人工智能 残余物 卷积神经网络 模式识别(心理学) 乳腺超声检查 超声波 计算机视觉 乳腺癌 放射科 乳腺摄影术 癌症 医学 算法 内科学
作者
Gongping Chen,Yu Dai,Jianxun Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:117: 105601-105601 被引量:35
标识
DOI:10.1016/j.engappai.2022.105601
摘要

Breast ultrasound images segmentation is one of the key steps in clinical auxiliary diagnosis of breast cancer, which seriously threatens women’s health. Currently, deep learning methods have been successfully applied to breast tumors segmentation. However, blurred boundaries, heterostructure and other factors can cause serious missed detections and false detections in the segmentation results. In this paper, we developed a novel refinement residual convolutional network to segment breast tumors accurately from ultrasound images, which mainly composed of SegNet with deep supervision module, missed detection residual network and false detection residual network. In SegNet, we add six side-out deep supervision modules to guide the network to learn to predict precise segmentation masks scale-by-scale. In missed detection residual network, the receptive field provided by different dilation rates can provide more global information, which is easily lost in deep convolutional layer. The introduction of false detection and missed detection residual network can promotes the network to make more efforts on those hardly-predicted pixels to help us obtain more accurate segmentation results of the breast tumor. To evaluate the segmentation performance of the network, we compared with several state-of-the-art segmentation approaches using five quantitative metrics on two public breast datasets. Experimental results demonstrate that our method achieves the best segmentation results, which indicates that our method has better adaptability on breast tumors segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呵浅陌发布了新的文献求助10
刚刚
我是老大应助David采纳,获得10
1秒前
usee完成签到,获得积分10
1秒前
2秒前
GrandeAmore完成签到,获得积分10
2秒前
2秒前
2秒前
思源应助哈哈哈采纳,获得10
3秒前
pluto应助xiaodq采纳,获得10
3秒前
3秒前
qq596发布了新的文献求助10
3秒前
qsw完成签到,获得积分10
3秒前
NexusExplorer应助ddd采纳,获得10
4秒前
4秒前
5秒前
5秒前
五本笔记完成签到 ,获得积分10
5秒前
Marybaby完成签到,获得积分10
5秒前
科目三应助ikun采纳,获得10
6秒前
HMM完成签到,获得积分10
6秒前
李健的小迷弟应助caixiayin采纳,获得10
6秒前
6秒前
星点点发布了新的文献求助10
6秒前
7秒前
xxx完成签到,获得积分10
7秒前
会飞的猪发布了新的文献求助10
7秒前
snow完成签到 ,获得积分10
8秒前
KOIKOI完成签到,获得积分10
8秒前
9秒前
9秒前
lihanyan666发布了新的文献求助10
9秒前
9秒前
仁爱的柚子完成签到,获得积分10
10秒前
10秒前
11秒前
华仔应助玉七采纳,获得10
12秒前
12秒前
77完成签到,获得积分10
12秒前
螺丝老人发布了新的文献求助30
13秒前
小马发布了新的文献求助10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009871
求助须知:如何正确求助?哪些是违规求助? 3549812
关于积分的说明 11303839
捐赠科研通 3284342
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886393
科研通“疑难数据库(出版商)”最低求助积分说明 811406