Classification of Alzheimer's disease stage using machine learning for left and right oxygenation difference signals in the prefrontal cortex: a patient-level, single-group, diagnostic interventional trial.

痴呆 听力学 前额叶皮质 认知 神经心理学 充氧 医学 阿尔茨海默病 物理医学与康复 心理学 神经科学 内科学 疾病
作者
J Kim,S C Kim,D Kang,Dong Keon Yon,J G Kim
出处
期刊:DOAJ: Directory of Open Access Journals - DOAJ 卷期号:26 (21): 7734-7741 被引量:14
标识
DOI:10.26355/eurrev_202211_30122
摘要

Recent evidence shows that indicators testing conventional olfactory function have a high degree of similarity to cognitive function tests and the potential to diagnose early-stage Alzheimer's disease (AD). In this study, the efficacy of functional near-infrared spectroscopy time-series data obtained through olfactory stimulation was investigated as an early diagnostic tool for mild cognitive impairment in AD using random forest, a machine learning algorithm.We conducted a patient-level, single-group, diagnostic interventional trial using near-infrared signals measured during olfactory stimulation in the prefrontal cortex of 178 older adults ranging from normal to participants with AD as markers to discriminate AD stages. We first divided the participants into normal older adults, AD mild cognitive impairment, and AD groups using dementia diagnostic criteria such as the Mini-Mental State Examination and Seoul Neuropsychological Screening Battery. We compared the left and right oxygenation difference by calculating the relative oxygenation difference from the change in relative oxygen concentration.A total of 168 participants met the eligibility criteria: 70 (41.6%) had normal cognitive function; 42 (25%) mild cognitive impairment; 21 (12.5%) mild AD; and 35 (20.8%) moderate AD. A random forest machine learning model was developed to predict the AD stage, with an area under the receiver operating characteristic curve of 90.7% for mild cognitive impairment and AD, 90.99% for mild cognitive impairment, and 93.34% for AD only.Based on the classification of the oxygenation difference index of the left and right prefrontal cortices during olfactory stimulation through machine learning, we found that it was possible to detect early-stage mild cognitive impairment in AD. Our results highlight the potential for early AD diagnosis using near-infrared signals from the prefrontal cortex obtained upon olfactory stimulation. Moreover, the results showed high similarity to the existing cognitive function tests and high accuracy in AD stage classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱因斯宣发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
淡然惜萱发布了新的文献求助10
2秒前
YH完成签到,获得积分10
2秒前
楚奇完成签到,获得积分10
2秒前
甜蜜的曼冬完成签到 ,获得积分10
3秒前
合适的平安完成签到 ,获得积分10
3秒前
新之助完成签到,获得积分10
4秒前
上官发布了新的文献求助10
4秒前
lqkcqmu发布了新的文献求助30
5秒前
呼噜完成签到,获得积分10
5秒前
研友_VZG7GZ应助燕子采纳,获得30
5秒前
高贵的乐天完成签到 ,获得积分10
5秒前
Hello应助阿瓦隆的蓝胖子采纳,获得30
5秒前
少年白777完成签到,获得积分10
5秒前
王金豪完成签到,获得积分10
5秒前
6秒前
Yellue发布了新的文献求助10
6秒前
drl完成签到,获得积分10
6秒前
CodeCraft应助xiaomili采纳,获得10
9秒前
9秒前
9秒前
爆米花应助啦啦啦采纳,获得10
10秒前
新之助发布了新的文献求助10
10秒前
10秒前
qw1完成签到,获得积分20
10秒前
舒适的尔容完成签到,获得积分10
10秒前
Ryan完成签到,获得积分10
11秒前
高大笙完成签到,获得积分10
11秒前
兑润泽完成签到,获得积分10
11秒前
11秒前
reece完成签到 ,获得积分10
11秒前
12秒前
wsh071117完成签到,获得积分10
12秒前
小蘑菇应助mwy采纳,获得10
12秒前
无花果应助刘莅采纳,获得10
12秒前
12秒前
ED应助lqkcqmu采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600