亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Library book recommendation with CNN-FM deep learning approach

计算机科学 过度拟合 人工智能 深度学习 背景(考古学) 机器学习 特征(语言学) 卷积神经网络 情报检索 推荐系统 杠杆(统计) 数据科学 人工神经网络 生物 哲学 古生物学 语言学
作者
Xiaohua Shi,Hao Chen,Yongsheng Ding,Hongtao Lu
出处
期刊:Library Hi Tech [Emerald (MCB UP)]
被引量:3
标识
DOI:10.1108/lht-08-2022-0400
摘要

Purpose Traditional library book recommendation methods are mainly based on association rules and user profiles. They may help to learn about students' interest in different types of books, e.g., students majoring in science and engineering tend to pay more attention to computer books. Nevertheless, most of them still need to identify users' interests accurately. To solve the problem, the authors propose a novel embedding-driven model called InFo, which refers to users' intrinsic interests and academic preferences to provide personalized library book recommendations. Design/methodology/approach The authors analyze the characteristics and challenges in real library book recommendations and then propose a method considering feature interactions. Specifically, the authors leverage the attention unit to extract students' preferences for different categories of books from their borrowing history, after which we feed the unit into the Factorization Machine with other context-aware features to learn students' hybrid interests. The authors employ a convolution neural network to extract high-order correlations among feature maps which are obtained by the outer product between feature embeddings. Findings The authors evaluate the model by conducting experiments on a real-world dataset in one university. The results show that the model outperforms other state-of-the-art methods in terms of two metrics called Recall and NDCG. Research limitations/implications It requires a specific data size to prevent overfitting during model training, and the proposed method may face the user/item cold-start challenge. Practical implications The embedding-driven book recommendation model could be applied in real libraries to provide valuable recommendations based on readers' preferences. Originality/value The proposed method is a practical embedding-driven model that accurately captures diverse user preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
39秒前
44秒前
DoggyBadiou发布了新的文献求助10
50秒前
LEE完成签到,获得积分10
1分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
陈媛发布了新的文献求助10
4分钟前
小柯发布了新的文献求助10
4分钟前
小柯完成签到,获得积分10
4分钟前
CipherSage应助陈媛采纳,获得10
4分钟前
kuoping完成签到,获得积分10
4分钟前
5分钟前
陈媛发布了新的文献求助10
5分钟前
5分钟前
土豪的灵竹完成签到 ,获得积分10
5分钟前
丘比特应助陈媛采纳,获得10
5分钟前
6分钟前
完美世界应助一杯茶采纳,获得10
6分钟前
oncoma完成签到 ,获得积分10
6分钟前
6分钟前
陈媛发布了新的文献求助10
6分钟前
波里舞完成签到 ,获得积分10
7分钟前
陈媛发布了新的文献求助10
7分钟前
大个应助beiwei采纳,获得10
8分钟前
8分钟前
beiwei发布了新的文献求助10
8分钟前
beiwei完成签到,获得积分10
8分钟前
fasdfkgh完成签到,获得积分10
9分钟前
9分钟前
一杯茶发布了新的文献求助10
9分钟前
谢谢你变体精灵完成签到,获得积分10
9分钟前
FashionBoy应助陈媛采纳,获得10
10分钟前
tuanheqi完成签到,获得积分0
11分钟前
11分钟前
12分钟前
陈媛发布了新的文献求助10
12分钟前
在水一方应助陈媛采纳,获得10
13分钟前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
Project Studies: A Late Modern University Reform? 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167188
求助须知:如何正确求助?哪些是违规求助? 2818678
关于积分的说明 7921848
捐赠科研通 2478428
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438