Library book recommendation with CNN-FM deep learning approach

计算机科学 过度拟合 人工智能 深度学习 背景(考古学) 特征工程 机器学习 特征(语言学) 情报检索 推荐系统 杠杆(统计) 嵌入 数据科学 人工神经网络 古生物学 哲学 生物 语言学
作者
Xiaohua Shi,Hao Chen,Yue Ding,Hongtao Lu
出处
期刊:Library Hi Tech [Emerald Publishing Limited]
卷期号:42 (5): 1559-1578 被引量:5
标识
DOI:10.1108/lht-08-2022-0400
摘要

Purpose Traditional library book recommendation methods are mainly based on association rules and user profiles. They may help to learn about students' interest in different types of books, e.g., students majoring in science and engineering tend to pay more attention to computer books. Nevertheless, most of them still need to identify users' interests accurately. To solve the problem, the authors propose a novel embedding-driven model called InFo, which refers to users' intrinsic interests and academic preferences to provide personalized library book recommendations. Design/methodology/approach The authors analyze the characteristics and challenges in real library book recommendations and then propose a method considering feature interactions. Specifically, the authors leverage the attention unit to extract students' preferences for different categories of books from their borrowing history, after which we feed the unit into the Factorization Machine with other context-aware features to learn students' hybrid interests. The authors employ a convolution neural network to extract high-order correlations among feature maps which are obtained by the outer product between feature embeddings. Findings The authors evaluate the model by conducting experiments on a real-world dataset in one university. The results show that the model outperforms other state-of-the-art methods in terms of two metrics called Recall and NDCG. Research limitations/implications It requires a specific data size to prevent overfitting during model training, and the proposed method may face the user/item cold-start challenge. Practical implications The embedding-driven book recommendation model could be applied in real libraries to provide valuable recommendations based on readers' preferences. Originality/value The proposed method is a practical embedding-driven model that accurately captures diverse user preferences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羊加橙完成签到,获得积分10
1秒前
笑点低的语梦完成签到,获得积分10
2秒前
2秒前
22222发布了新的文献求助30
2秒前
3秒前
3秒前
3秒前
俗丨发布了新的文献求助200
5秒前
yydragen应助fei采纳,获得50
5秒前
脑洞疼应助有魅力的凡灵采纳,获得10
6秒前
wuw666完成签到,获得积分10
6秒前
年轻的问兰完成签到,获得积分10
7秒前
陈佳完成签到 ,获得积分10
9秒前
9秒前
9秒前
微弱de胖头完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
lee完成签到 ,获得积分10
11秒前
11秒前
充电宝应助洁净的钢铁侠采纳,获得30
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
乐乐应助Thor采纳,获得10
14秒前
haojinxiu发布了新的文献求助10
15秒前
嘻嘻乙烯完成签到,获得积分10
15秒前
15秒前
王致远发布了新的文献求助10
15秒前
乐乐应助自由大叔采纳,获得10
15秒前
坚强幼晴发布了新的文献求助10
16秒前
过雨露完成签到,获得积分10
16秒前
小白完成签到,获得积分10
16秒前
wzZ完成签到,获得积分10
17秒前
向阳而生完成签到,获得积分20
18秒前
Jasper应助learner1994采纳,获得10
20秒前
小熊座a完成签到,获得积分10
21秒前
小虎同学完成签到,获得积分10
21秒前
斯文败类应助伶俐楷瑞采纳,获得10
22秒前
snowpie完成签到 ,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958282
求助须知:如何正确求助?哪些是违规求助? 3504444
关于积分的说明 11118494
捐赠科研通 3235770
什么是DOI,文献DOI怎么找? 1788433
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582