Detecting AI-generated essays: the ChatGPT challenge

人工智能 分类器(UML) 计算机科学 机器学习 支持向量机 独创性 生成语法 软件 自然语言处理 召回 心理学 创造力 社会心理学 认知心理学 程序设计语言
作者
Ilker Cingillioglu
出处
期刊:Campus-wide Information Systems [Emerald (MCB UP)]
卷期号:40 (3): 259-268 被引量:29
标识
DOI:10.1108/ijilt-03-2023-0043
摘要

Purpose With the advent of ChatGPT, a sophisticated generative artificial intelligence (AI) tool, maintaining academic integrity in all educational settings has recently become a challenge for educators. This paper discusses a method and necessary strategies to confront this challenge. Design/methodology/approach In this study, a language model was defined to achieve high accuracy in distinguishing ChatGPT-generated essays from human written essays with a particular focus on “not falsely” classifying genuinely human-written essays as AI-generated (Negative). Findings Via support vector machine (SVM) algorithm 100% accuracy was recorded for identifying human generated essays. The author discussed the key use of Recall and F2 score for measuring classification performance and the importance of eliminating False Negatives and making sure that no actual human generated essays are incorrectly classified as AI generated. The results of the proposed model's classification algorithms were compared to those of AI-generated text detection software developed by OpenAI, GPTZero and Copyleaks. Practical implications AI-generated essays submitted by students can be detected by teachers and educational designers using the proposed language model and machine learning (ML) classifier at a high accuracy. Human (student)-generated essays can and must be correctly identified with 100% accuracy even if the overall classification accuracy performance is slightly reduced. Originality/value This is the first and only study that used an n-gram bag-of-words (BOWs) discrepancy language model as input for a classifier to make such prediction and compared the classification results of other AI-generated text detection software in an empirical way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hwen完成签到,获得积分10
刚刚
echo完成签到,获得积分10
1秒前
1秒前
彤航完成签到,获得积分10
2秒前
笨笨平松发布了新的文献求助10
2秒前
4秒前
任梓宁发布了新的文献求助10
5秒前
xbbccc完成签到,获得积分20
5秒前
AAAstf完成签到 ,获得积分10
7秒前
举个栗子完成签到,获得积分10
7秒前
8秒前
yyz发布了新的文献求助10
10秒前
10秒前
开朗娩完成签到 ,获得积分10
11秒前
不知名的呆毛完成签到 ,获得积分10
13秒前
14秒前
科研通AI2S应助Leoniko采纳,获得10
14秒前
hammer完成签到,获得积分10
15秒前
Kyrie完成签到,获得积分10
16秒前
耍酷芙蓉完成签到,获得积分10
16秒前
16秒前
Ling完成签到,获得积分10
16秒前
fengmy完成签到,获得积分10
17秒前
肉哥发布了新的文献求助30
17秒前
打打应助123采纳,获得10
19秒前
周钰波关注了科研通微信公众号
20秒前
斯文棒球完成签到 ,获得积分10
21秒前
充电宝应助bb采纳,获得10
21秒前
油菜籽完成签到 ,获得积分10
22秒前
heija完成签到,获得积分10
23秒前
一帆锋顺完成签到,获得积分10
23秒前
shen完成签到,获得积分10
23秒前
23秒前
24秒前
Dearjw1655完成签到,获得积分10
24秒前
Fox完成签到,获得积分0
25秒前
小列巴完成签到,获得积分10
27秒前
28秒前
星星完成签到 ,获得积分10
28秒前
闲人不贤完成签到,获得积分10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137155
求助须知:如何正确求助?哪些是违规求助? 2788182
关于积分的说明 7784837
捐赠科研通 2444146
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011