Sleep Patterns, Plasma Metabolome, and Risk of Incident Type 2 Diabetes Mellitus

孟德尔随机化 代谢组学 代谢组 危险系数 医学 2型糖尿病 2型糖尿病 比例危险模型 内科学 背景(考古学) 糖尿病 生物信息学 内分泌学 置信区间 生物 遗传学 代谢物 基因型 古生物学 基因 遗传变异
作者
Zhenhuang Zhuang,Xue Dong,Jinzhu Jia,Zhonghua Liu,Tao Huang,Lu Qi
出处
期刊:The Journal of Clinical Endocrinology and Metabolism [The Endocrine Society]
卷期号:108 (10): e1034-e1043 被引量:7
标识
DOI:10.1210/clinem/dgad218
摘要

A healthy sleep pattern has been related to a lower risk of type 2 diabetes mellitus (T2DM).We aimed to identify the metabolomic signature for the healthy sleep pattern and assess its potential causality with T2DM.This study included 78 659 participants with complete phenotypic data (sleep information and metabolomic measurements) from the UK Biobank study. Elastic net regularized regression was applied to calculate a metabolomic signature reflecting overall sleep patterns. We also performed genome-wide association analysis of the metabolomic signature and one-sample mendelian randomization (MR) with T2DM risk.During a median of 8.8 years of follow-up, we documented 1489 incident T2DM cases. Compared with individuals who had an unhealthy sleep pattern, those with a healthy sleep pattern had a 49% lower risk of T2DM (multivariable-adjusted hazard ratio [HR], 0.51; 95% CI, 0.40-0.63). We further constructed a metabolomic signature using elastic net regularized regressions that comprised 153 metabolites, and robustly correlated with sleep pattern (r = 0.19; P = 3×10-325). In multivariable Cox regressions, the metabolomic signature showed a statistically significant inverse association with T2DM risk (HR per SD increment in the signature, 0.56; 95% CI, 0.52-0.60). Additionally, MR analyses indicated a significant causal relation between the genetically predicted metabolomic signature and incident T2DM (P for trend < .001).In this large prospective study, we identified a metabolomic signature for the healthy sleep pattern, and such a signature showed a potential causality with T2DM risk independent of traditional risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LKGG完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
周士乐发布了新的文献求助10
2秒前
Sunshine发布了新的文献求助10
2秒前
呼吸之野完成签到,获得积分10
3秒前
害怕的小懒虫完成签到,获得积分10
3秒前
思源应助Nefelibata采纳,获得10
4秒前
妮儿发布了新的文献求助10
4秒前
BareBear应助rosa采纳,获得10
4秒前
沉默凡桃发布了新的文献求助10
5秒前
Orange应助9℃采纳,获得10
5秒前
5秒前
一只橘子完成签到 ,获得积分10
5秒前
6秒前
韭黄发布了新的文献求助10
6秒前
西瓜发布了新的文献求助10
6秒前
Ll发布了新的文献求助10
6秒前
6秒前
wcy关注了科研通微信公众号
6秒前
7秒前
7秒前
CipherSage应助爱喝冰可乐采纳,获得10
8秒前
8秒前
bdvdsrwteges完成签到,获得积分10
8秒前
鱼雷完成签到,获得积分10
9秒前
9秒前
天天快乐应助喜洋洋采纳,获得10
9秒前
PANSIXUAN完成签到 ,获得积分10
10秒前
善良香岚发布了新的文献求助10
10秒前
10秒前
huizi完成签到,获得积分20
10秒前
RichardZ完成签到,获得积分10
10秒前
10秒前
左左发布了新的文献求助10
11秒前
执着的怜寒应助哈哈哈haha采纳,获得40
11秒前
Cassie完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759