Visual identification and pose estimation algorithms of nut tightening robot system

螺母 旋转(数学) 人工智能 姿势 算法 鉴定(生物学) 职位(财务) 机器人 计算机视觉 集合(抽象数据类型) 计算机科学 数学 工程类 植物 结构工程 财务 经济 生物 程序设计语言
作者
Zhou Yibang,Xiaoyong Wang,Lanzhu Zhang
出处
期刊:The International Journal of Advanced Manufacturing Technology [Springer Nature]
卷期号:127 (11-12): 5307-5326
标识
DOI:10.1007/s00170-023-11597-6
摘要

To realize the automatic tightening of nuts, a nut tightening robot system strategy based on machine vision was designed in this work. The strategy was based on three stages: nut image calibration, nut identification, and nut pose estimation. In the first stage, the template pose image of the nut and the coordinates of the nut center in this nut image were obtained by calibration. In the second stage, a nut identification algorithm based on improved the backbone feature extraction network and area generation network of Faster-RCNN was presented, which improved the efficiency and accuracy of nut identification. In the last stage, a nut pose estimation algorithm based on Fourier and log-polar coordinate transformation was presented to solve the rotation angle, translation, and scale of the nut relative to the template nut image and then obtain the rotation angle of the sleeve and the central coordinate of the nut. An experimental nut tightening robot platform was also set up in this work. The results of 50 tests showed that the proposed detection methods could identify nuts with 100% accuracy, and with the proposed pose estimation methods, the average error of the rotation angle of the nut was 0.057°, and the average error of the center position of the nut in $$x$$ and $$y$$ directions was ± 0.05 mm and of $$z$$ direction was ± 0.5 mm. The experimental results showed that the nut tightening robot scheme and algorithm designed in this work were feasible in nut identification and pose estimation and met the requirements of insertion accuracy in the process of nut tightening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
难过千凝完成签到,获得积分10
1秒前
neo完成签到,获得积分10
1秒前
万能图书馆应助rio采纳,获得10
2秒前
1104481279发布了新的文献求助10
2秒前
2秒前
Sunny完成签到,获得积分10
2秒前
3秒前
zr237618发布了新的文献求助10
3秒前
醉赏星辰完成签到 ,获得积分10
3秒前
3秒前
4秒前
Mercury发布了新的文献求助10
4秒前
迅速泽洋完成签到,获得积分10
5秒前
卷心菜完成签到,获得积分10
5秒前
领导范儿应助负责念梦采纳,获得10
5秒前
烟花应助空空采纳,获得10
5秒前
6秒前
隐形铃铛发布了新的文献求助150
6秒前
小羊发布了新的文献求助10
7秒前
木南南完成签到,获得积分10
8秒前
ddd完成签到,获得积分10
8秒前
Owen应助1104481279采纳,获得10
9秒前
彭于晏应助吖吖采纳,获得10
9秒前
啦啦啦啦啦完成签到,获得积分10
9秒前
Fairy发布了新的文献求助10
10秒前
10秒前
昨夜星辰完成签到,获得积分10
10秒前
10秒前
Mistletoe完成签到 ,获得积分10
10秒前
10秒前
炎星语完成签到,获得积分10
11秒前
11秒前
11秒前
郁郁葱葱完成签到,获得积分10
12秒前
Sunny发布了新的文献求助10
12秒前
踏实的黎云完成签到,获得积分10
13秒前
现代的向珊完成签到 ,获得积分10
13秒前
Mercury完成签到,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143174
求助须知:如何正确求助?哪些是违规求助? 2794297
关于积分的说明 7810446
捐赠科研通 2450505
什么是DOI,文献DOI怎么找? 1303862
科研通“疑难数据库(出版商)”最低求助积分说明 627081
版权声明 601384