无效红细胞生成
地中海贫血
红细胞生成
红细胞
小RNA
下调和上调
癌症研究
医学
生物
内科学
基因
贫血
遗传学
作者
Phatchariya Phannasil,Chanyanat Sukhuma,Donny Nauphar,Khanita Nuamsee,Saovaros Svasti
标识
DOI:10.1016/j.bcmd.2023.102781
摘要
Ineffective erythropoiesis is the main cause of anemia in β-thalassemia. The crucial hallmark of ineffective erythropoiesis is the high proliferation of erythroblast. microRNA (miR/miRNA) involves several biological processes, including cell proliferation and erythropoiesis. miR-101 was widely studied and associated with proliferation in several types of cancer. However, the miR-101-3p has not been studied in β-thalassemia/HbE. Therefore, this study aims to investigate the expression of miR-101-3p during erythropoiesis in β-thalassemia/HbE. The results showed that miR-101-3p was upregulated in the erythroblast of β-thalassemia/HbE patients on day 7, indicating that miR-101-3p may be involved with high proliferation in β-thalassemia/HbE. Therefore, the mRNA targets of miR-101-3p including Rac1, SUB1, TET2, and TRIM44 were investigated to determine the mechanisms involved with high proliferation of β-thalassemia/HbE erythroblasts. Rac1 expression was significantly reduced at day 11 in severe β-thalassemia/HbE compared to normal controls and mild β-thalassemia/HbE. SUB1 gene expression was significantly lower in severe β-thalassemia/HbE compared to normal controls at day 9 of culture. For TET2 and TRIM44 expression, a significant difference was not observed among normal and β-thalassemia/HbE. However, the high expression of miR-101-3p at day 7 and these target genes was not correlated, suggesting that this miRNA may regulate ineffective erythropoiesis in β-thalassemia/HbE via other target genes.
科研通智能强力驱动
Strongly Powered by AbleSci AI