An unsupervised deep learning model for dense velocity field reconstruction in particle image velocimetry (PIV) measurements

人工智能 深度学习 稳健性(进化) 粒子图像测速 无监督学习 光流 图像扭曲 物理 计算机科学 计算机视觉 模式识别(心理学) 图像(数学) 机械 基因 化学 湍流 生物化学
作者
Wei Zhang,Xue Dong,Zhiwei Sun,Shuogui Xu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:9
标识
DOI:10.1063/5.0152865
摘要

Supervised deep learning methods reported recently have shown promising capability and efficiency in particle image velocimetry (PIV) processes compared to the traditional cross correlation and optical flow methods. However, the deep learning-based methods in previous reports require synthesized particle images and simulated flows for training prior to applications, conflicting with experimental scenarios. To address this crucial limitation, unsupervised deep learning methods have also been proposed for flow velocity reconstruction, but they are generally limited to rough flow reconstructions with low accuracy in velocity due to, for example, particle occlusion and out-of-boundary motions. This paper proposes a new unsupervised deep learning model named UnPWCNet-PIV (an unsupervised optical flow network using Pyramid, Warping, and Cost Volume). Such a pyramidical network with specific enhancements on flow reconstructions holds capabilities to manage particle occlusion and boundary motions. The new model showed comparable accuracy and robustness with the advanced supervised deep learning methods, which are based on synthesized images, together with superior performance on experimental images. This paper presents the details of the UnPWCNet-PIV architecture and the assessments of its accuracy and robustness on both synthesized and experimental images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助XIEQ采纳,获得10
2秒前
ding应助范良聪采纳,获得10
3秒前
宓广缘发布了新的文献求助10
4秒前
华仔应助无情的尔风采纳,获得30
4秒前
小二郎应助无情的尔风采纳,获得10
4秒前
6秒前
华仔应助sci大户采纳,获得10
6秒前
斯文败类应助ccc采纳,获得10
7秒前
Van完成签到,获得积分10
9秒前
古或今完成签到,获得积分10
9秒前
浮游应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
niceLDD应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
10秒前
搜集达人应助科研通管家采纳,获得30
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
11秒前
ccc发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
18秒前
Akim应助真不叫阿呆采纳,获得10
19秒前
Alice完成签到,获得积分20
20秒前
tier3完成签到,获得积分10
21秒前
南风发布了新的文献求助10
22秒前
度ewf发布了新的文献求助10
23秒前
24秒前
24秒前
24秒前
24秒前
科研通AI6应助cyy2339采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432