An unsupervised deep learning model for dense velocity field reconstruction in particle image velocimetry (PIV) measurements

人工智能 深度学习 稳健性(进化) 粒子图像测速 无监督学习 光流 图像扭曲 物理 计算机科学 计算机视觉 模式识别(心理学) 图像(数学) 机械 生物化学 化学 湍流 基因
作者
Wei Zhang,Xue Dong,Zhiwei Sun,Shuogui Xu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:9
标识
DOI:10.1063/5.0152865
摘要

Supervised deep learning methods reported recently have shown promising capability and efficiency in particle image velocimetry (PIV) processes compared to the traditional cross correlation and optical flow methods. However, the deep learning-based methods in previous reports require synthesized particle images and simulated flows for training prior to applications, conflicting with experimental scenarios. To address this crucial limitation, unsupervised deep learning methods have also been proposed for flow velocity reconstruction, but they are generally limited to rough flow reconstructions with low accuracy in velocity due to, for example, particle occlusion and out-of-boundary motions. This paper proposes a new unsupervised deep learning model named UnPWCNet-PIV (an unsupervised optical flow network using Pyramid, Warping, and Cost Volume). Such a pyramidical network with specific enhancements on flow reconstructions holds capabilities to manage particle occlusion and boundary motions. The new model showed comparable accuracy and robustness with the advanced supervised deep learning methods, which are based on synthesized images, together with superior performance on experimental images. This paper presents the details of the UnPWCNet-PIV architecture and the assessments of its accuracy and robustness on both synthesized and experimental images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助YJ888采纳,获得10
2秒前
农夫完成签到,获得积分0
2秒前
2秒前
4秒前
wonder123发布了新的文献求助10
9秒前
10秒前
11秒前
Lyn发布了新的文献求助10
12秒前
柴胡完成签到,获得积分10
12秒前
大个应助wonder123采纳,获得10
13秒前
FashionBoy应助lan采纳,获得10
14秒前
善学以致用应助doiwanado采纳,获得10
15秒前
16秒前
16秒前
眼睛大如天完成签到,获得积分10
17秒前
slx发布了新的文献求助100
18秒前
风趣依瑶发布了新的文献求助10
19秒前
PAN完成签到,获得积分20
19秒前
haha发布了新的文献求助10
19秒前
19秒前
科研民工_郭完成签到,获得积分10
21秒前
吕子尚发布了新的文献求助10
22秒前
淡定落雁发布了新的文献求助10
22秒前
cis2014发布了新的文献求助10
22秒前
Mxj0607发布了新的文献求助10
23秒前
24秒前
wudizhuzhu233完成签到,获得积分10
24秒前
赘婿应助123456采纳,获得10
26秒前
26秒前
27秒前
27秒前
27秒前
不一样的烟火完成签到,获得积分10
29秒前
hmd_150完成签到,获得积分10
29秒前
sssss发布了新的文献求助10
30秒前
wudizhuzhu233发布了新的文献求助10
31秒前
Aswl完成签到 ,获得积分10
31秒前
31秒前
32秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176