肝星状细胞
纤维连接蛋白
血管生成
细胞外基质
肝纤维化
索拉非尼
纤维化
癌症研究
脂质体
体内
药物输送
药理学
医学
细胞生物学
生物
材料科学
病理
生物化学
肝细胞癌
纳米技术
生物技术
作者
Rui Li,Jinhang Zhang,Qinhui Liu,Qin Tang,Qingyi Jia,Yimin Xiong,Jinhan He,Yanping Li
标识
DOI:10.1016/j.actbio.2023.06.032
摘要
Activated hepatic stellate cells (HSCs) are considered the key driver of excessive extracellular matrix and abnormal angiogenesis, which are the main pathological manifestations of hepatic fibrosis. However, the absence of specific targeting moieties has rendered the development of HSC-targeted drug delivery systems a significant obstacle in the treatment of liver fibrosis. Here we have identified a notable increase in fibronectin expression on HSCs, which positively correlates with the progression of hepatic fibrosis. Thus, we decorated PEGylated liposomes with CREKA, a peptide with high affinity for fibronectin, to facilitate the targeted delivery of sorafenib to activated HSCs. The CREKA-coupled liposomes exhibited enhanced cellular uptake in the human hepatic stellate cell line LX2 and selective accumulation in CCl4-induced fibrotic liver through the recognition of fibronectin. When loaded with sorafenib, the CREKA-modified liposomes effectively suppressed HSC activation and collagen accumulation in vitro. Furthermore. in vivo results demonstrated that the administration of sorafenib-loaded CREKA-liposomes at a low dose significantly mitigated CCl4-induced hepatic fibrosis, prevented inflammatory infiltration and reduced angiogenesis in mice. These findings suggest that CREKA-coupled liposomes have promising potential as a targeted delivery system for therapeutic agents to activated HSCs, thereby providing an efficient treatment option for hepatic fibrosis. STATEMENT OF SIGNIFICANCE: In liver fibrosis, activated hepatic stellate cells (aHSCs) are the key driver of extracellular matrix and abnormal angiogenesis. Our investigation has revealed a significant elevation in fibronectin expression on aHSCs, which is positively associated with the progression of hepatic fibrosis. Thus, we developed PEGylated liposomes decorated with CREKA, a molecule with a high affinity for fibronectin, to facilitate the targeted delivery of sorafenib to aHSCs. The CREKA-coupled liposomes can specifically target aHSCs both in vitro and in vivo. Loading sorafenib into CREKA-Lip significantly alleviated CCl4-induced liver fibrosis, angiogenesis and inflammation at low doses. These findings suggest that our drug delivery system holds promise as a viable therapeutic option for liver fibrosis with minimal risk of adverse effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI