Modeling directed weighted network based on event coincidence analysis and its application on spatial propagation characteristics

巧合 事件(粒子物理) 计算机科学 数据挖掘 同步(交流) 构造(python库) 拓扑(电路) 数学 物理 计算机网络 天体物理学 医学 频道(广播) 替代医学 病理 组合数学
作者
Li-Na Wang,Mingwu Li,C. R. Zang
出处
期刊:Chaos [American Institute of Physics]
卷期号:33 (6)
标识
DOI:10.1063/5.0142001
摘要

The problem of synchronicity quantification, based on event occurrence time, has become the research focus in different fields. Methods of synchrony measurement provide an effective way to explore spatial propagation characteristics of extreme events. Using the synchrony measurement method of event coincidence analysis, we construct a directed weighted network and innovatively explore the direction of correlations between event sequences. Based on trigger event coincidence, the synchrony of traffic extreme events of base stations is measured. Analyzing topology characteristics of the network, we study the spatial propagation characteristics of traffic extreme events in the communication system, including the propagation area, propagation influence, and spatial aggregation. This study provides a framework of network modeling to quantify the propagation characteristics of extreme events, which is helpful for further research on the prediction of extreme events. In particular, our framework is effective for events that occurred in time aggregation. In addition, from the perspective of a directed network, we analyze differences between the precursor event coincidence and the trigger event coincidence and the impact of event aggregation on the synchrony measurement methods. The precursor event coincidence and the trigger event coincidence are consistent when identifying event synchronization, while there are differences when measuring the event synchronization extent. Our study can provide a reference for the analysis of extreme climatic events such as rainstorms, droughts, and others in the climate field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mawenting完成签到 ,获得积分10
刚刚
zeke完成签到,获得积分10
1秒前
科研通AI5应助solobang采纳,获得10
2秒前
2秒前
小宇OvO发布了新的文献求助10
3秒前
3秒前
忘羡222完成签到,获得积分10
3秒前
专一发布了新的文献求助10
5秒前
跳跃曼文完成签到,获得积分10
6秒前
干将莫邪完成签到,获得积分10
7秒前
SYLH应助exile采纳,获得10
7秒前
小二郎应助魔幻的从梦采纳,获得10
8秒前
9秒前
雪鸽鸽发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
12秒前
科研通AI5应助朱一龙采纳,获得30
13秒前
SharonDu完成签到 ,获得积分10
14秒前
ayin完成签到,获得积分10
14秒前
15秒前
15秒前
啦啦啦完成签到,获得积分10
15秒前
coffee发布了新的文献求助10
16秒前
16秒前
科研混子发布了新的文献求助10
16秒前
咿咿呀呀发布了新的文献求助10
16秒前
酷酷碧发布了新的文献求助10
18秒前
飘逸宛丝完成签到,获得积分10
19秒前
qzaima发布了新的文献求助10
19秒前
米酒完成签到,获得积分10
21秒前
step_stone给step_stone的求助进行了留言
21秒前
乐乐应助ayin采纳,获得10
22秒前
无花果应助hhh采纳,获得10
24秒前
叁壹粑粑完成签到,获得积分10
25秒前
酷酷碧完成签到,获得积分10
25秒前
26秒前
磕盐民工完成签到,获得积分10
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824