A framework for threat intelligence extraction and fusion

计算机科学 关系(数据库) 追踪 计算机安全 可追溯性 构造(python库) 管道(软件) 关系抽取 对象(语法) 数据挖掘 人工智能 软件工程 操作系统 程序设计语言
作者
Yongyan Guo,Zhengyu Liu,Cheng Huang,Nannan Wang,Hai Min,Wenbo Guo,Jiayong Liu
出处
期刊:Computers & Security [Elsevier]
卷期号:132: 103371-103371 被引量:32
标识
DOI:10.1016/j.cose.2023.103371
摘要

Cyber-attacks, with various emerging attack techniques, are becoming increasingly sophisticated and difficult to deal with, posing great threats to companies and every individual. Therefore, analyzing attack incidents and tracing the attack groups behind them becomes extremely important. Threat intelligence provides a new technical solution for attack traceability by constructing Cybersecurity Knowledge Graph (CKG). In this paper, we propose a framework for threat intelligence extraction and fusion, which is able to extract, correlate and unify cybersecurity entity-relation triples from structured and unstructured data. However, the existing entity and relation extraction for cybersecurity concepts uses the traditional pipeline model that suffers from error propagation and ignores the connection between the two subtasks. To solve the above problem, we propose a joint entity and relation extraction model for cybersecurity concepts. We model the joint extraction problem as a multiple sequence labeling problem, generating separate label sequences for different relations, which contain information about the involved entities and the subject and object of that relation. Experimental results on Open Source Intelligence (OSINT) data show that the F1 value of the joint model is 81.37%, which is better than the previous pipeline model. For the knowledge fusion, we propose an improved Levenshtein distance to correlate the same entities extracted from different data sources to construct a preliminary CKG, which is demonstrated in the Experiments section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星河完成签到,获得积分10
1秒前
1秒前
Akim应助自觉的溪灵采纳,获得10
2秒前
科研小能手完成签到,获得积分10
2秒前
虞无声发布了新的文献求助10
2秒前
3秒前
Lucy发布了新的文献求助10
3秒前
4秒前
zyx完成签到 ,获得积分10
5秒前
斯文败类应助MS903采纳,获得30
6秒前
无谓发布了新的文献求助10
6秒前
KK发布了新的文献求助10
6秒前
7秒前
Tao发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
吴陈完成签到,获得积分10
10秒前
10秒前
希望天下0贩的0应助wugkazh采纳,获得30
11秒前
萧寒发布了新的文献求助10
11秒前
11秒前
manbo发布了新的文献求助10
11秒前
WYP完成签到,获得积分10
11秒前
无谓完成签到,获得积分10
12秒前
12秒前
青mu发布了新的文献求助10
13秒前
现代的寻雪完成签到,获得积分10
14秒前
immortel发布了新的文献求助10
14秒前
15秒前
科研狗发布了新的文献求助10
15秒前
15秒前
16秒前
汤纪宇完成签到,获得积分10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600893
求助须知:如何正确求助?哪些是违规求助? 4686444
关于积分的说明 14843995
捐赠科研通 4678825
什么是DOI,文献DOI怎么找? 2539074
邀请新用户注册赠送积分活动 1505973
关于科研通互助平台的介绍 1471241