A framework for threat intelligence extraction and fusion

计算机科学 关系(数据库) 追踪 计算机安全 可追溯性 构造(python库) 管道(软件) 关系抽取 对象(语法) 数据挖掘 人工智能 软件工程 操作系统 程序设计语言
作者
Yongyan Guo,Zhengyu Liu,Cheng Huang,Nannan Wang,Hai Min,Wenbo Guo,Jiayong Liu
出处
期刊:Computers & Security [Elsevier BV]
卷期号:132: 103371-103371 被引量:12
标识
DOI:10.1016/j.cose.2023.103371
摘要

Cyber-attacks, with various emerging attack techniques, are becoming increasingly sophisticated and difficult to deal with, posing great threats to companies and every individual. Therefore, analyzing attack incidents and tracing the attack groups behind them becomes extremely important. Threat intelligence provides a new technical solution for attack traceability by constructing Cybersecurity Knowledge Graph (CKG). In this paper, we propose a framework for threat intelligence extraction and fusion, which is able to extract, correlate and unify cybersecurity entity-relation triples from structured and unstructured data. However, the existing entity and relation extraction for cybersecurity concepts uses the traditional pipeline model that suffers from error propagation and ignores the connection between the two subtasks. To solve the above problem, we propose a joint entity and relation extraction model for cybersecurity concepts. We model the joint extraction problem as a multiple sequence labeling problem, generating separate label sequences for different relations, which contain information about the involved entities and the subject and object of that relation. Experimental results on Open Source Intelligence (OSINT) data show that the F1 value of the joint model is 81.37%, which is better than the previous pipeline model. For the knowledge fusion, we propose an improved Levenshtein distance to correlate the same entities extracted from different data sources to construct a preliminary CKG, which is demonstrated in the Experiments section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
daodemoli完成签到,获得积分10
刚刚
幸运草完成签到,获得积分10
刚刚
1秒前
autumn完成签到,获得积分10
2秒前
3秒前
英勇的汉堡完成签到,获得积分10
4秒前
濡益完成签到 ,获得积分10
4秒前
bofu发布了新的文献求助20
4秒前
4秒前
5秒前
q792309106发布了新的文献求助10
6秒前
7秒前
z先生发布了新的文献求助10
10秒前
10秒前
光撒盐完成签到,获得积分10
10秒前
斯文雪青完成签到,获得积分10
11秒前
旋转的龙发布了新的文献求助10
12秒前
KK完成签到,获得积分10
13秒前
13秒前
宋娣发布了新的文献求助20
14秒前
xyx发布了新的文献求助10
15秒前
17秒前
可爱的以松完成签到,获得积分10
18秒前
18秒前
19秒前
纯真的诗兰完成签到,获得积分10
19秒前
19秒前
20秒前
z先生完成签到,获得积分20
20秒前
热心又蓝完成签到,获得积分10
20秒前
今后应助西扬采纳,获得30
21秒前
CipherSage应助开心的傲安采纳,获得10
21秒前
23秒前
23秒前
Manzhen发布了新的文献求助10
23秒前
cc完成签到,获得积分10
23秒前
24秒前
深情安青应助CG2021采纳,获得10
25秒前
shelly发布了新的文献求助10
25秒前
25秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163