A framework for threat intelligence extraction and fusion

计算机科学 关系(数据库) 追踪 计算机安全 可追溯性 构造(python库) 管道(软件) 关系抽取 对象(语法) 数据挖掘 人工智能 软件工程 程序设计语言 操作系统
作者
Yongyan Guo,Zhengyu Liu,Cheng Huang,Nannan Wang,Hai Min,Wenbo Guo,Jiayong Liu
出处
期刊:Computers & Security [Elsevier]
卷期号:132: 103371-103371 被引量:12
标识
DOI:10.1016/j.cose.2023.103371
摘要

Cyber-attacks, with various emerging attack techniques, are becoming increasingly sophisticated and difficult to deal with, posing great threats to companies and every individual. Therefore, analyzing attack incidents and tracing the attack groups behind them becomes extremely important. Threat intelligence provides a new technical solution for attack traceability by constructing Cybersecurity Knowledge Graph (CKG). In this paper, we propose a framework for threat intelligence extraction and fusion, which is able to extract, correlate and unify cybersecurity entity-relation triples from structured and unstructured data. However, the existing entity and relation extraction for cybersecurity concepts uses the traditional pipeline model that suffers from error propagation and ignores the connection between the two subtasks. To solve the above problem, we propose a joint entity and relation extraction model for cybersecurity concepts. We model the joint extraction problem as a multiple sequence labeling problem, generating separate label sequences for different relations, which contain information about the involved entities and the subject and object of that relation. Experimental results on Open Source Intelligence (OSINT) data show that the F1 value of the joint model is 81.37%, which is better than the previous pipeline model. For the knowledge fusion, we propose an improved Levenshtein distance to correlate the same entities extracted from different data sources to construct a preliminary CKG, which is demonstrated in the Experiments section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助波子采纳,获得10
刚刚
游一发布了新的文献求助10
1秒前
Jessie完成签到,获得积分20
1秒前
w1x2123完成签到,获得积分10
1秒前
FYhan完成签到,获得积分20
1秒前
清秀代亦完成签到,获得积分20
1秒前
王治豪发布了新的文献求助10
1秒前
万幸鹿发布了新的文献求助10
2秒前
田様应助玉yu采纳,获得10
2秒前
ng完成签到,获得积分10
3秒前
3秒前
exersong完成签到 ,获得积分10
4秒前
专注梦之完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
豪123456完成签到 ,获得积分10
5秒前
彭于彦祖应助狗子采纳,获得30
5秒前
彭于彦祖应助狗子采纳,获得30
5秒前
可爱的函函应助寒冷丹雪采纳,获得10
5秒前
seven发布了新的文献求助10
5秒前
6秒前
Morty完成签到,获得积分10
6秒前
让我看看完成签到,获得积分20
7秒前
7秒前
sasa完成签到 ,获得积分10
7秒前
高高的罡完成签到,获得积分10
8秒前
echo发布了新的文献求助10
8秒前
燕燕其羽完成签到 ,获得积分10
9秒前
9秒前
9秒前
清秀代亦发布了新的文献求助30
9秒前
10秒前
一木完成签到,获得积分10
10秒前
泡沫发布了新的文献求助10
10秒前
lalala发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
小庄发布了新的文献求助10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648