亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A framework for threat intelligence extraction and fusion

计算机科学 关系(数据库) 追踪 计算机安全 可追溯性 构造(python库) 管道(软件) 关系抽取 对象(语法) 数据挖掘 人工智能 软件工程 操作系统 程序设计语言
作者
Yongyan Guo,Zhengyu Liu,Cheng Huang,Nannan Wang,Hai Min,Wenbo Guo,Jiayong Liu
出处
期刊:Computers & Security [Elsevier]
卷期号:132: 103371-103371 被引量:32
标识
DOI:10.1016/j.cose.2023.103371
摘要

Cyber-attacks, with various emerging attack techniques, are becoming increasingly sophisticated and difficult to deal with, posing great threats to companies and every individual. Therefore, analyzing attack incidents and tracing the attack groups behind them becomes extremely important. Threat intelligence provides a new technical solution for attack traceability by constructing Cybersecurity Knowledge Graph (CKG). In this paper, we propose a framework for threat intelligence extraction and fusion, which is able to extract, correlate and unify cybersecurity entity-relation triples from structured and unstructured data. However, the existing entity and relation extraction for cybersecurity concepts uses the traditional pipeline model that suffers from error propagation and ignores the connection between the two subtasks. To solve the above problem, we propose a joint entity and relation extraction model for cybersecurity concepts. We model the joint extraction problem as a multiple sequence labeling problem, generating separate label sequences for different relations, which contain information about the involved entities and the subject and object of that relation. Experimental results on Open Source Intelligence (OSINT) data show that the F1 value of the joint model is 81.37%, which is better than the previous pipeline model. For the knowledge fusion, we propose an improved Levenshtein distance to correlate the same entities extracted from different data sources to construct a preliminary CKG, which is demonstrated in the Experiments section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bzh关注了科研通微信公众号
1秒前
郑zheng完成签到 ,获得积分10
7秒前
无情的问枫完成签到 ,获得积分10
10秒前
111完成签到,获得积分10
18秒前
沐兮完成签到 ,获得积分10
29秒前
A_123完成签到,获得积分10
33秒前
FashionBoy应助胸大无肌采纳,获得10
41秒前
上官若男应助胸大无肌采纳,获得10
41秒前
善学以致用应助胸大无肌采纳,获得10
41秒前
无花果应助胸大无肌采纳,获得10
41秒前
41秒前
Owen应助胸大无肌采纳,获得10
41秒前
Orange应助胸大无肌采纳,获得10
41秒前
爆米花应助胸大无肌采纳,获得10
41秒前
Ava应助胸大无肌采纳,获得10
41秒前
Snow完成签到 ,获得积分10
45秒前
LeiYu完成签到 ,获得积分10
48秒前
帅气天荷完成签到 ,获得积分10
50秒前
云子完成签到,获得积分10
50秒前
啥时候吃火锅完成签到 ,获得积分0
55秒前
钟钟完成签到,获得积分10
1分钟前
香蕉觅云应助绾颜采纳,获得10
1分钟前
xxx完成签到 ,获得积分10
1分钟前
zcz完成签到 ,获得积分10
1分钟前
小冯完成签到 ,获得积分10
1分钟前
华仔应助胸大无肌采纳,获得10
1分钟前
小蘑菇应助胸大无肌采纳,获得10
1分钟前
赘婿应助胸大无肌采纳,获得10
1分钟前
小马甲应助胸大无肌采纳,获得10
1分钟前
在水一方应助胸大无肌采纳,获得10
1分钟前
Ava应助胸大无肌采纳,获得10
1分钟前
ding应助胸大无肌采纳,获得10
1分钟前
天天快乐应助胸大无肌采纳,获得10
1分钟前
脑洞疼应助胸大无肌采纳,获得10
1分钟前
Owen应助胸大无肌采纳,获得10
1分钟前
古古怪界丶黑大帅完成签到,获得积分10
1分钟前
1分钟前
面包战士发布了新的文献求助10
1分钟前
grosfgcrd完成签到,获得积分20
1分钟前
周周完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875612
求助须知:如何正确求助?哪些是违规求助? 6519070
关于积分的说明 15677388
捐赠科研通 4993580
什么是DOI,文献DOI怎么找? 2691573
邀请新用户注册赠送积分活动 1633815
关于科研通互助平台的介绍 1591471