An ensemble hierarchical clustering algorithm based on merits at cluster and partition levels

聚类分析 共识聚类 数据挖掘 层次聚类 计算机科学 分拆(数论) 单连锁聚类 稳健性(进化) 相关聚类 星团(航天器) 模糊聚类 CURE数据聚类算法 相似性度量 人工智能 模式识别(心理学) 数学 基因 组合数学 生物化学 化学 程序设计语言
作者
Qirui Huang,Rui Gao,Hoda Akhavan
出处
期刊:Pattern Recognition [Elsevier]
卷期号:136: 109255-109255 被引量:17
标识
DOI:10.1016/j.patcog.2022.109255
摘要

Ensemble clustering has emerged as a combination of several basic clustering algorithms to achieve high quality final clustering. However, this technique is challenging due to the complexities in primary clusters such as overlapping, vagueness, instability and uncertainty. Typically, ensemble clustering uses all the primary clusters into partitions for consensus, where the merits of a cluster or a partition can be considered to improve the quality of the consensus. In general, the robustness of a partition may be poorly measured, while having some high-quality clusters. Inspired by the evaluation of cluster and partition, this paper proposes an ensemble hierarchical clustering algorithm based on the cluster consensus selection approach. Here, the selection of a subset of primary clusters from partitions based on their merit level is emphasized. Merit level is defined using the development of Normalized Mutual Information measure. Clusters of basic clustering algorithms that satisfy the predefined threshold of this measure are selected to participate in the final consensus. In addition, the consensus of the selected primary clusters to create the final clusters is performed based on the clusters clustering technique. In this technique, the selected primary clusters are re-clustered to create hyper-clusters. Finally, the final clusters are formed by assigning instances to hyper-clusters with the highest similarity. Here, an innovative criterion based on merit and cluster size for defining similarity is presented. The performance of the proposed algorithm has been proven by extensive experiments on real-world datasets from the UCI repository compared to state-of-the-art algorithms such as CPDM, ENMI, IDEA, CFTLC and SSCEN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xm完成签到,获得积分10
1秒前
谦让的含海完成签到,获得积分10
1秒前
所所应助包容的剑采纳,获得10
1秒前
1秒前
2秒前
lynn_zhang发布了新的文献求助10
2秒前
3秒前
xh发布了新的文献求助10
3秒前
所所应助luoshi采纳,获得10
3秒前
飞龙在天完成签到 ,获得积分10
3秒前
深爱不疑完成签到,获得积分10
4秒前
知识四面八方来完成签到 ,获得积分10
4秒前
我就是我完成签到,获得积分10
4秒前
4秒前
4秒前
heart完成签到,获得积分10
4秒前
keroro发布了新的文献求助10
5秒前
6秒前
pzc发布了新的文献求助10
6秒前
深爱不疑发布了新的文献求助10
7秒前
jennie完成签到 ,获得积分10
7秒前
徐徐发布了新的文献求助80
7秒前
不信慕斯完成签到,获得积分10
7秒前
Jokeypu完成签到,获得积分10
7秒前
gnr2000发布了新的文献求助30
8秒前
8秒前
song99完成签到,获得积分10
8秒前
清醒的ZY发布了新的文献求助50
8秒前
二小发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
澹台灭明发布了新的文献求助10
9秒前
9秒前
bkagyin应助AteeqBaloch采纳,获得10
10秒前
二二二发布了新的文献求助10
10秒前
万能图书馆应助LIU采纳,获得10
10秒前
绿麦盲区发布了新的文献求助10
10秒前
FIGGIEKIO完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762