亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An ensemble hierarchical clustering algorithm based on merits at cluster and partition levels

聚类分析 共识聚类 数据挖掘 层次聚类 计算机科学 分拆(数论) 单连锁聚类 稳健性(进化) 相关聚类 星团(航天器) 模糊聚类 CURE数据聚类算法 相似性度量 人工智能 模式识别(心理学) 数学 基因 组合数学 生物化学 化学 程序设计语言
作者
Qirui Huang,Rui Gao,Hoda Akhavan
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:136: 109255-109255 被引量:25
标识
DOI:10.1016/j.patcog.2022.109255
摘要

Ensemble clustering has emerged as a combination of several basic clustering algorithms to achieve high quality final clustering. However, this technique is challenging due to the complexities in primary clusters such as overlapping, vagueness, instability and uncertainty. Typically, ensemble clustering uses all the primary clusters into partitions for consensus, where the merits of a cluster or a partition can be considered to improve the quality of the consensus. In general, the robustness of a partition may be poorly measured, while having some high-quality clusters. Inspired by the evaluation of cluster and partition, this paper proposes an ensemble hierarchical clustering algorithm based on the cluster consensus selection approach. Here, the selection of a subset of primary clusters from partitions based on their merit level is emphasized. Merit level is defined using the development of Normalized Mutual Information measure. Clusters of basic clustering algorithms that satisfy the predefined threshold of this measure are selected to participate in the final consensus. In addition, the consensus of the selected primary clusters to create the final clusters is performed based on the clusters clustering technique. In this technique, the selected primary clusters are re-clustered to create hyper-clusters. Finally, the final clusters are formed by assigning instances to hyper-clusters with the highest similarity. Here, an innovative criterion based on merit and cluster size for defining similarity is presented. The performance of the proposed algorithm has been proven by extensive experiments on real-world datasets from the UCI repository compared to state-of-the-art algorithms such as CPDM, ENMI, IDEA, CFTLC and SSCEN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
zhuwg发布了新的文献求助30
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
6秒前
6秒前
6秒前
6秒前
粥粥发布了新的文献求助10
7秒前
粥粥发布了新的文献求助10
7秒前
粥粥发布了新的文献求助10
7秒前
粥粥发布了新的文献求助10
7秒前
英俊的铭应助蒙豆儿采纳,获得10
7秒前
粥粥发布了新的文献求助10
7秒前
粥粥发布了新的文献求助10
7秒前
粥粥发布了新的文献求助10
8秒前
粥粥发布了新的文献求助10
8秒前
粥粥发布了新的文献求助10
9秒前
粥粥发布了新的文献求助10
10秒前
粥粥发布了新的文献求助10
10秒前
粥粥发布了新的文献求助10
10秒前
粥粥发布了新的文献求助10
10秒前
有风的地方完成签到 ,获得积分10
13秒前
善学以致用应助ZPQ采纳,获得10
16秒前
19秒前
Charles完成签到,获得积分10
19秒前
20秒前
21秒前
蒙豆儿发布了新的文献求助10
24秒前
33秒前
李李原上草完成签到 ,获得积分10
35秒前
Biscotti发布了新的文献求助10
40秒前
科研通AI2S应助Bob采纳,获得10
48秒前
Biscotti完成签到,获得积分10
51秒前
Bob完成签到,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581650
求助须知:如何正确求助?哪些是违规求助? 3999578
关于积分的说明 12381439
捐赠科研通 3674298
什么是DOI,文献DOI怎么找? 2024891
邀请新用户注册赠送积分活动 1058770
科研通“疑难数据库(出版商)”最低求助积分说明 945556