An ensemble hierarchical clustering algorithm based on merits at cluster and partition levels

聚类分析 共识聚类 数据挖掘 层次聚类 计算机科学 分拆(数论) 单连锁聚类 稳健性(进化) 相关聚类 星团(航天器) 模糊聚类 CURE数据聚类算法 相似性度量 人工智能 模式识别(心理学) 数学 基因 组合数学 生物化学 化学 程序设计语言
作者
Qirui Huang,Rui Gao,Hoda Akhavan
出处
期刊:Pattern Recognition [Elsevier]
卷期号:136: 109255-109255 被引量:17
标识
DOI:10.1016/j.patcog.2022.109255
摘要

Ensemble clustering has emerged as a combination of several basic clustering algorithms to achieve high quality final clustering. However, this technique is challenging due to the complexities in primary clusters such as overlapping, vagueness, instability and uncertainty. Typically, ensemble clustering uses all the primary clusters into partitions for consensus, where the merits of a cluster or a partition can be considered to improve the quality of the consensus. In general, the robustness of a partition may be poorly measured, while having some high-quality clusters. Inspired by the evaluation of cluster and partition, this paper proposes an ensemble hierarchical clustering algorithm based on the cluster consensus selection approach. Here, the selection of a subset of primary clusters from partitions based on their merit level is emphasized. Merit level is defined using the development of Normalized Mutual Information measure. Clusters of basic clustering algorithms that satisfy the predefined threshold of this measure are selected to participate in the final consensus. In addition, the consensus of the selected primary clusters to create the final clusters is performed based on the clusters clustering technique. In this technique, the selected primary clusters are re-clustered to create hyper-clusters. Finally, the final clusters are formed by assigning instances to hyper-clusters with the highest similarity. Here, an innovative criterion based on merit and cluster size for defining similarity is presented. The performance of the proposed algorithm has been proven by extensive experiments on real-world datasets from the UCI repository compared to state-of-the-art algorithms such as CPDM, ENMI, IDEA, CFTLC and SSCEN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小胭胭发布了新的文献求助10
2秒前
5秒前
7秒前
大狒狒完成签到,获得积分10
7秒前
123lx完成签到,获得积分20
8秒前
秋雅发布了新的文献求助10
9秒前
肉末茄子完成签到,获得积分10
9秒前
外向的惜珊完成签到,获得积分10
10秒前
lixy完成签到,获得积分10
10秒前
11秒前
小杨发布了新的文献求助20
11秒前
布鲁爱思完成签到,获得积分10
11秒前
12秒前
13秒前
美琦完成签到,获得积分10
14秒前
14秒前
美好芳发布了新的文献求助10
15秒前
华仔应助斯文雅旋采纳,获得10
17秒前
伟钧完成签到,获得积分10
17秒前
18秒前
souir发布了新的文献求助10
22秒前
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
今后应助科研通管家采纳,获得10
24秒前
orixero应助科研通管家采纳,获得50
24秒前
李健应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得10
24秒前
CipherSage应助科研通管家采纳,获得10
24秒前
24秒前
高贵季节发布了新的文献求助10
26秒前
汉堡包应助伊麦香城采纳,获得10
27秒前
李健应助souir采纳,获得10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140482
求助须知:如何正确求助?哪些是违规求助? 2791338
关于积分的说明 7798605
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194