An ensemble hierarchical clustering algorithm based on merits at cluster and partition levels

聚类分析 共识聚类 数据挖掘 层次聚类 计算机科学 分拆(数论) 单连锁聚类 稳健性(进化) 相关聚类 星团(航天器) 模糊聚类 CURE数据聚类算法 相似性度量 人工智能 模式识别(心理学) 数学 基因 组合数学 生物化学 化学 程序设计语言
作者
Qirui Huang,Rui Gao,Hoda Akhavan
出处
期刊:Pattern Recognition [Elsevier]
卷期号:136: 109255-109255 被引量:25
标识
DOI:10.1016/j.patcog.2022.109255
摘要

Ensemble clustering has emerged as a combination of several basic clustering algorithms to achieve high quality final clustering. However, this technique is challenging due to the complexities in primary clusters such as overlapping, vagueness, instability and uncertainty. Typically, ensemble clustering uses all the primary clusters into partitions for consensus, where the merits of a cluster or a partition can be considered to improve the quality of the consensus. In general, the robustness of a partition may be poorly measured, while having some high-quality clusters. Inspired by the evaluation of cluster and partition, this paper proposes an ensemble hierarchical clustering algorithm based on the cluster consensus selection approach. Here, the selection of a subset of primary clusters from partitions based on their merit level is emphasized. Merit level is defined using the development of Normalized Mutual Information measure. Clusters of basic clustering algorithms that satisfy the predefined threshold of this measure are selected to participate in the final consensus. In addition, the consensus of the selected primary clusters to create the final clusters is performed based on the clusters clustering technique. In this technique, the selected primary clusters are re-clustered to create hyper-clusters. Finally, the final clusters are formed by assigning instances to hyper-clusters with the highest similarity. Here, an innovative criterion based on merit and cluster size for defining similarity is presented. The performance of the proposed algorithm has been proven by extensive experiments on real-world datasets from the UCI repository compared to state-of-the-art algorithms such as CPDM, ENMI, IDEA, CFTLC and SSCEN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻灵松完成签到,获得积分10
刚刚
百川完成签到 ,获得积分10
1秒前
DrCuiTianjin完成签到 ,获得积分0
2秒前
所所应助危机的尔琴采纳,获得10
2秒前
gigi完成签到 ,获得积分10
2秒前
2秒前
wydkyd发布了新的文献求助10
3秒前
夏老师发布了新的文献求助10
3秒前
4秒前
斯文败类应助ar采纳,获得10
5秒前
5秒前
couletian完成签到 ,获得积分10
7秒前
安静的幻竹应助leslie采纳,获得10
7秒前
小航完成签到 ,获得积分10
7秒前
dw关注了科研通微信公众号
7秒前
Giggle完成签到,获得积分10
8秒前
小蘑菇应助丶huasheng采纳,获得10
10秒前
希望天下0贩的0应助zhangxu采纳,获得150
10秒前
11秒前
mmmi发布了新的文献求助30
11秒前
大个应助符昱采纳,获得30
14秒前
15秒前
sparrow发布了新的文献求助10
16秒前
Stan完成签到,获得积分10
16秒前
16秒前
思源应助感性的天蓉采纳,获得30
17秒前
董梦晴完成签到,获得积分20
19秒前
华仔应助杨明伟采纳,获得10
19秒前
D-L@rabbit发布了新的文献求助10
20秒前
丶huasheng发布了新的文献求助10
22秒前
22秒前
小李完成签到 ,获得积分10
24秒前
汤纪宇发布了新的文献求助10
24秒前
25秒前
fengliurencai完成签到,获得积分10
25秒前
youda完成签到 ,获得积分10
25秒前
zhangxu发布了新的文献求助150
26秒前
26秒前
李卓如发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589919
求助须知:如何正确求助?哪些是违规求助? 4674386
关于积分的说明 14793761
捐赠科研通 4629344
什么是DOI,文献DOI怎么找? 2532468
邀请新用户注册赠送积分活动 1501123
关于科研通互助平台的介绍 1468527