Manage Inventories with Learning on Demands and Buy-up Substitution Probability

收益管理 收入 库存(枪支) 替代(逻辑) 贝叶斯概率 运筹学 经济 计算机科学 微观经济学 财务 数学 机械工程 工程类 人工智能 程序设计语言
作者
Zhenwei Luo,Pengfei Guo,Yulan Wang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (2): 563-580 被引量:5
标识
DOI:10.1287/msom.2022.1169
摘要

Problem Definition: This paper considers a setting in which an airline company sells seats periodically, and each period consists of two selling phases, an early-bird discount phase and a regular-price phase. In each period, when the early-bird discount seat is stocked out, an early-bird customer who comes for the discounted seat either purchases the regular-price seat as a substitute (called buy-up substitution) or simply leaves. Methodology/Results: The optimal inventory level of the discounted seats reserved for the early-bird sale is a critical decision for the airline company to maximize its revenue. The airline company learns about the demands for both discounted and regular-price seats and the buy-up substitution probability from historical sales data, which, in turn, are affected by past inventory allocation decisions. In this paper, we investigate two information scenarios based on whether lost sales are observable, and we provide the corresponding Bayesian updating mechanism for learning about demand parameters and substitution probability. We then construct a dynamic programming model to derive the Bayesian optimal inventory level decisions in a multiperiod setting. The literature finds that the unobservability of lost sales drives the inventory manager to stock more (i.e., the Bayesian optimal inventory level should be kept higher than the myopic inventory level) to observe and learn more about demand distributions. Here, we show that when the buy-up substitution probability is known, one may stock less, because one can infer some information about the primary demand for the discounted seat from the customer substitution behavior. We also find that to learn about the unknown buy-up substitution probability drives the inventory manager to stock less so as to induce more substitution trials. Finally, we develop a SoftMax algorithm to solve our dynamic programming problem. We show that the obtained stock more (less) result can be utilized to speed up the convergence of the algorithm to the optimal solution. Managerial Implications: Our results shed light on the airline seat protection level decision with learning about demand parameters and buy-up substitution probability. Compared with myopic optimization, Bayesian inventory decisions that consider the exploration-exploitation tradeoff can avoid getting stuck in local optima and improve the revenue. We also identify new driving forces behind the stock more (less) result that complement the Bayesian inventory management literature. Funding: Z. Luo acknowledges the financial support by the Internal Start-up Fund of The Hong Kong Polytechnic University [Grant P0039035]. P. Guo acknowledges the financial support from the Research Grants Council of Hong Kong [Grant 15508518]. Y. Wang’s work was supported by the Research Grants Council of Hong Kong [Grant 15505318] and the National Natural Science Foundation of China [Grant 71971184]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.1169 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助12233采纳,获得10
刚刚
刚刚
1秒前
量子星尘发布了新的文献求助20
1秒前
木林森幻完成签到,获得积分10
2秒前
3秒前
李健的小迷弟应助0110采纳,获得10
3秒前
心理咨熊师完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
竞鹤应助办法总比困难多采纳,获得10
4秒前
4秒前
fh完成签到,获得积分20
4秒前
Ayao完成签到,获得积分10
4秒前
walongjushi发布了新的文献求助10
4秒前
席松完成签到,获得积分10
4秒前
chelsea完成签到,获得积分10
4秒前
5秒前
akion完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
library2025完成签到,获得积分10
6秒前
Paul完成签到,获得积分10
6秒前
认真雅阳完成签到 ,获得积分10
7秒前
科目三应助xiaofeifantasy采纳,获得10
7秒前
7秒前
细心的傥发布了新的文献求助10
7秒前
benmao_mogu完成签到,获得积分10
7秒前
7秒前
风吹麦田应助zmz采纳,获得50
7秒前
czz完成签到,获得积分10
7秒前
pluto应助江畔无言暮垂柳采纳,获得10
7秒前
周em12_完成签到,获得积分10
8秒前
yaya发布了新的文献求助10
8秒前
星辰大海应助倦鸟余花采纳,获得10
8秒前
Dan发布了新的文献求助10
8秒前
外星人完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034