Manage Inventories with Learning on Demands and Buy-up Substitution Probability

收益管理 收入 库存(枪支) 替代(逻辑) 贝叶斯概率 运筹学 经济 计算机科学 微观经济学 财务 数学 机械工程 工程类 人工智能 程序设计语言
作者
Zhenwei Luo,Pengfei Guo,Yulan Wang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (2): 563-580 被引量:2
标识
DOI:10.1287/msom.2022.1169
摘要

Problem Definition: This paper considers a setting in which an airline company sells seats periodically, and each period consists of two selling phases, an early-bird discount phase and a regular-price phase. In each period, when the early-bird discount seat is stocked out, an early-bird customer who comes for the discounted seat either purchases the regular-price seat as a substitute (called buy-up substitution) or simply leaves. Methodology/Results: The optimal inventory level of the discounted seats reserved for the early-bird sale is a critical decision for the airline company to maximize its revenue. The airline company learns about the demands for both discounted and regular-price seats and the buy-up substitution probability from historical sales data, which, in turn, are affected by past inventory allocation decisions. In this paper, we investigate two information scenarios based on whether lost sales are observable, and we provide the corresponding Bayesian updating mechanism for learning about demand parameters and substitution probability. We then construct a dynamic programming model to derive the Bayesian optimal inventory level decisions in a multiperiod setting. The literature finds that the unobservability of lost sales drives the inventory manager to stock more (i.e., the Bayesian optimal inventory level should be kept higher than the myopic inventory level) to observe and learn more about demand distributions. Here, we show that when the buy-up substitution probability is known, one may stock less, because one can infer some information about the primary demand for the discounted seat from the customer substitution behavior. We also find that to learn about the unknown buy-up substitution probability drives the inventory manager to stock less so as to induce more substitution trials. Finally, we develop a SoftMax algorithm to solve our dynamic programming problem. We show that the obtained stock more (less) result can be utilized to speed up the convergence of the algorithm to the optimal solution. Managerial Implications: Our results shed light on the airline seat protection level decision with learning about demand parameters and buy-up substitution probability. Compared with myopic optimization, Bayesian inventory decisions that consider the exploration-exploitation tradeoff can avoid getting stuck in local optima and improve the revenue. We also identify new driving forces behind the stock more (less) result that complement the Bayesian inventory management literature. Funding: Z. Luo acknowledges the financial support by the Internal Start-up Fund of The Hong Kong Polytechnic University [Grant P0039035]. P. Guo acknowledges the financial support from the Research Grants Council of Hong Kong [Grant 15508518]. Y. Wang’s work was supported by the Research Grants Council of Hong Kong [Grant 15505318] and the National Natural Science Foundation of China [Grant 71971184]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.1169 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助梦想采纳,获得10
刚刚
t1234567完成签到 ,获得积分10
1秒前
1秒前
Dou完成签到,获得积分10
2秒前
chenchen发布了新的文献求助10
2秒前
Orange应助蔫蔫采纳,获得10
3秒前
fuiee发布了新的文献求助30
4秒前
细心夏瑶发布了新的文献求助10
4秒前
浅尝离白应助活泼的曼寒采纳,获得30
4秒前
球球发布了新的文献求助10
4秒前
小杨发布了新的文献求助10
4秒前
5秒前
123应助Jasonzzz采纳,获得10
5秒前
乐观的茗发布了新的文献求助10
6秒前
科研通AI2S应助hailey53采纳,获得10
6秒前
7秒前
xiaodu20230228完成签到 ,获得积分10
7秒前
雾里看花完成签到,获得积分10
8秒前
爱静静应助xinlei2023采纳,获得10
8秒前
无花果应助chenchen采纳,获得10
8秒前
9秒前
echo发布了新的文献求助10
10秒前
10秒前
香蕉觅云应助王岩松采纳,获得10
11秒前
一颗树发布了新的文献求助10
12秒前
12秒前
helio完成签到,获得积分10
13秒前
13秒前
丘比特应助小于采纳,获得10
14秒前
凌代萱发布了新的文献求助10
14秒前
博弈春秋完成签到,获得积分10
15秒前
大模型应助爱吃冬瓜采纳,获得10
15秒前
15秒前
搜集达人应助哒啦啦采纳,获得10
15秒前
可爱的函函应助ikun采纳,获得10
16秒前
wwwww发布了新的文献求助10
16秒前
16秒前
17秒前
称心的保温杯完成签到,获得积分10
17秒前
chenchen完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313270
求助须知:如何正确求助?哪些是违规求助? 2945680
关于积分的说明 8526586
捐赠科研通 2621440
什么是DOI,文献DOI怎么找? 1433542
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650568