Manage Inventories with Learning on Demands and Buy-up Substitution Probability

收益管理 收入 库存(枪支) 替代(逻辑) 贝叶斯概率 运筹学 经济 计算机科学 微观经济学 财务 数学 机械工程 工程类 人工智能 程序设计语言
作者
Zhenwei Luo,Pengfei Guo,Yulan Wang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (2): 563-580 被引量:2
标识
DOI:10.1287/msom.2022.1169
摘要

Problem Definition: This paper considers a setting in which an airline company sells seats periodically, and each period consists of two selling phases, an early-bird discount phase and a regular-price phase. In each period, when the early-bird discount seat is stocked out, an early-bird customer who comes for the discounted seat either purchases the regular-price seat as a substitute (called buy-up substitution) or simply leaves. Methodology/Results: The optimal inventory level of the discounted seats reserved for the early-bird sale is a critical decision for the airline company to maximize its revenue. The airline company learns about the demands for both discounted and regular-price seats and the buy-up substitution probability from historical sales data, which, in turn, are affected by past inventory allocation decisions. In this paper, we investigate two information scenarios based on whether lost sales are observable, and we provide the corresponding Bayesian updating mechanism for learning about demand parameters and substitution probability. We then construct a dynamic programming model to derive the Bayesian optimal inventory level decisions in a multiperiod setting. The literature finds that the unobservability of lost sales drives the inventory manager to stock more (i.e., the Bayesian optimal inventory level should be kept higher than the myopic inventory level) to observe and learn more about demand distributions. Here, we show that when the buy-up substitution probability is known, one may stock less, because one can infer some information about the primary demand for the discounted seat from the customer substitution behavior. We also find that to learn about the unknown buy-up substitution probability drives the inventory manager to stock less so as to induce more substitution trials. Finally, we develop a SoftMax algorithm to solve our dynamic programming problem. We show that the obtained stock more (less) result can be utilized to speed up the convergence of the algorithm to the optimal solution. Managerial Implications: Our results shed light on the airline seat protection level decision with learning about demand parameters and buy-up substitution probability. Compared with myopic optimization, Bayesian inventory decisions that consider the exploration-exploitation tradeoff can avoid getting stuck in local optima and improve the revenue. We also identify new driving forces behind the stock more (less) result that complement the Bayesian inventory management literature. Funding: Z. Luo acknowledges the financial support by the Internal Start-up Fund of The Hong Kong Polytechnic University [Grant P0039035]. P. Guo acknowledges the financial support from the Research Grants Council of Hong Kong [Grant 15508518]. Y. Wang’s work was supported by the Research Grants Council of Hong Kong [Grant 15505318] and the National Natural Science Foundation of China [Grant 71971184]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.1169 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟雨完成签到,获得积分10
刚刚
1秒前
陶醉钧完成签到,获得积分10
1秒前
糟糕的访梦完成签到,获得积分10
2秒前
3秒前
暮色发布了新的文献求助10
3秒前
眯眯眼的衬衫应助Possession采纳,获得10
3秒前
千帆发布了新的文献求助10
3秒前
aladi1011发布了新的文献求助10
4秒前
4秒前
kuoping完成签到,获得积分0
5秒前
5秒前
7秒前
Gulu_完成签到 ,获得积分10
8秒前
10秒前
六步郎发布了新的文献求助10
10秒前
愤怒的凤完成签到,获得积分20
10秒前
11秒前
13秒前
乐乐宝完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
17秒前
千帆完成签到,获得积分10
17秒前
清爽妙竹应助娃娃菜采纳,获得10
19秒前
19秒前
aaa慧关注了科研通微信公众号
19秒前
Akim应助1111采纳,获得10
19秒前
20秒前
20秒前
23秒前
汉堡包应助changnan采纳,获得10
24秒前
丰富青雪发布了新的文献求助10
24秒前
ZGH完成签到,获得积分10
24秒前
善学以致用应助小夜盲J采纳,获得10
25秒前
LHT发布了新的文献求助10
26秒前
離原发布了新的文献求助10
27秒前
28秒前
爆米花应助Kismet采纳,获得10
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952868
求助须知:如何正确求助?哪些是违规求助? 3498265
关于积分的说明 11091271
捐赠科研通 3228897
什么是DOI,文献DOI怎么找? 1785147
邀请新用户注册赠送积分活动 869190
科研通“疑难数据库(出版商)”最低求助积分说明 801367