亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Manage Inventories with Learning on Demands and Buy-up Substitution Probability

收益管理 收入 库存(枪支) 替代(逻辑) 贝叶斯概率 运筹学 经济 计算机科学 微观经济学 财务 数学 机械工程 工程类 人工智能 程序设计语言
作者
Zhenwei Luo,Pengfei Guo,Yulan Wang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (2): 563-580 被引量:5
标识
DOI:10.1287/msom.2022.1169
摘要

Problem Definition: This paper considers a setting in which an airline company sells seats periodically, and each period consists of two selling phases, an early-bird discount phase and a regular-price phase. In each period, when the early-bird discount seat is stocked out, an early-bird customer who comes for the discounted seat either purchases the regular-price seat as a substitute (called buy-up substitution) or simply leaves. Methodology/Results: The optimal inventory level of the discounted seats reserved for the early-bird sale is a critical decision for the airline company to maximize its revenue. The airline company learns about the demands for both discounted and regular-price seats and the buy-up substitution probability from historical sales data, which, in turn, are affected by past inventory allocation decisions. In this paper, we investigate two information scenarios based on whether lost sales are observable, and we provide the corresponding Bayesian updating mechanism for learning about demand parameters and substitution probability. We then construct a dynamic programming model to derive the Bayesian optimal inventory level decisions in a multiperiod setting. The literature finds that the unobservability of lost sales drives the inventory manager to stock more (i.e., the Bayesian optimal inventory level should be kept higher than the myopic inventory level) to observe and learn more about demand distributions. Here, we show that when the buy-up substitution probability is known, one may stock less, because one can infer some information about the primary demand for the discounted seat from the customer substitution behavior. We also find that to learn about the unknown buy-up substitution probability drives the inventory manager to stock less so as to induce more substitution trials. Finally, we develop a SoftMax algorithm to solve our dynamic programming problem. We show that the obtained stock more (less) result can be utilized to speed up the convergence of the algorithm to the optimal solution. Managerial Implications: Our results shed light on the airline seat protection level decision with learning about demand parameters and buy-up substitution probability. Compared with myopic optimization, Bayesian inventory decisions that consider the exploration-exploitation tradeoff can avoid getting stuck in local optima and improve the revenue. We also identify new driving forces behind the stock more (less) result that complement the Bayesian inventory management literature. Funding: Z. Luo acknowledges the financial support by the Internal Start-up Fund of The Hong Kong Polytechnic University [Grant P0039035]. P. Guo acknowledges the financial support from the Research Grants Council of Hong Kong [Grant 15508518]. Y. Wang’s work was supported by the Research Grants Council of Hong Kong [Grant 15505318] and the National Natural Science Foundation of China [Grant 71971184]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2022.1169 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
阿婧完成签到 ,获得积分10
24秒前
里昂完成签到,获得积分10
43秒前
1分钟前
1分钟前
2分钟前
姗姗发布了新的文献求助10
2分钟前
英俊的铭应助姗姗采纳,获得30
2分钟前
姗姗完成签到,获得积分10
2分钟前
852应助堪冷之采纳,获得30
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
汉堡包应助科研通管家采纳,获得10
3分钟前
fangye发布了新的文献求助100
3分钟前
4分钟前
xingsixs完成签到 ,获得积分10
4分钟前
整齐的不评完成签到,获得积分10
4分钟前
李健的小迷弟应助xl采纳,获得10
5分钟前
可夫司机完成签到 ,获得积分10
5分钟前
Yian应助科研通管家采纳,获得10
5分钟前
5分钟前
xl发布了新的文献求助10
5分钟前
fangye完成签到,获得积分10
5分钟前
6分钟前
王洋发布了新的文献求助10
6分钟前
6分钟前
xinxin0902发布了新的文献求助10
6分钟前
xinxin0902完成签到,获得积分10
6分钟前
sissiarno应助科研通管家采纳,获得30
7分钟前
温柔板栗应助科研通管家采纳,获得10
7分钟前
sissiarno应助科研通管家采纳,获得30
7分钟前
8分钟前
堪冷之发布了新的文献求助30
8分钟前
科研通AI6应助堪冷之采纳,获得10
9分钟前
堪冷之完成签到,获得积分10
9分钟前
sissiarno应助科研通管家采纳,获得30
9分钟前
无用的老董西完成签到 ,获得积分10
10分钟前
10分钟前
weibo完成签到,获得积分10
10分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292441
求助须知:如何正确求助?哪些是违规求助? 4442998
关于积分的说明 13830773
捐赠科研通 4326410
什么是DOI,文献DOI怎么找? 2374844
邀请新用户注册赠送积分活动 1370182
关于科研通互助平台的介绍 1334641