Structure-Aware Color Halftoning with Adaptive Sharpness Control

中间调 计算机科学 人工智能 计算机视觉 方向(向量空间) 相似性(几何) 图像(数学) 像素 印象 模式识别(心理学) 数学 几何学 万维网
作者
Fereshteh Abedini,Sasan Gooran
出处
期刊:Journal of Imaging Science and Technology [Society for Imaging Science & Technology]
卷期号:66 (6): 060404-11 被引量:1
标识
DOI:10.2352/j.imagingsci.technol.2022.66.6.060404
摘要

Structure-aware halftoning algorithms aim at improving their non-structure-aware version by preserving high-frequency details, structures, and tones and by employing additional information from the input image content. The recently proposed achromatic structure-aware Iterative Method Controlling the Dot Placement (IMCDP) halftoning algorithm uses the angle of the dominant line in each pixel’s neighborhood as supplementary information to align halftone structures with the dominant orientation in each region and results in sharper halftones, gives a more three-dimensional impression, and improves the structural similarity and tone preservation. However, this method is developed only for monochrome halftoning, the degree of sharpness enhancement is constant for the entire image, and the algorithm is prohibitively expensive for large images. In this paper, we present a faster and more flexible approach for representing the image structure using a Gabor-based orientation extraction technique which improves the computational performance of the structure-aware IMCDP by an order of magnitude while improving the visual qualities. In addition, we extended the method to color halftoning and studied the impact of orientation information in different color channels on improving sharpness enhancement, preserving structural similarity, and decreasing color reproduction error. Furthermore, we propose a dynamic sharpness enhancement approach, which adaptively varies the local sharpness of the halftone image based on different textures across the image. Our contributions in the present work enable the algorithm to adaptively work on large images with multiple regions and different textures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助大明采纳,获得10
1秒前
王婷发布了新的文献求助10
1秒前
2秒前
Lucas应助hhx采纳,获得10
2秒前
科研迪迦奥特曼完成签到,获得积分20
3秒前
5秒前
阔达书雪完成签到,获得积分10
6秒前
7秒前
我是老大应助微笑傥采纳,获得10
8秒前
Persevere完成签到,获得积分10
9秒前
轩逸发布了新的文献求助30
9秒前
9秒前
zho发布了新的文献求助10
10秒前
元谷雪发布了新的文献求助50
11秒前
14秒前
鸡爪完成签到,获得积分10
14秒前
LC完成签到 ,获得积分10
15秒前
ohuo完成签到,获得积分10
17秒前
18秒前
fhw发布了新的文献求助10
18秒前
18秒前
於依白发布了新的文献求助10
21秒前
wallonce发布了新的文献求助10
21秒前
23秒前
23秒前
23秒前
CodeCraft应助暴富采纳,获得10
23秒前
大模型应助ohuo采纳,获得10
23秒前
24秒前
24秒前
MoXian发布了新的文献求助20
24秒前
大王完成签到 ,获得积分10
26秒前
26秒前
拼搏向上发布了新的文献求助30
27秒前
27秒前
zho发布了新的文献求助10
27秒前
27秒前
田様应助内向的冷风采纳,获得10
30秒前
诚心的凉面完成签到 ,获得积分10
30秒前
31秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222475
求助须知:如何正确求助?哪些是违规求助? 2871136
关于积分的说明 8173991
捐赠科研通 2538057
什么是DOI,文献DOI怎么找? 1370279
科研通“疑难数据库(出版商)”最低求助积分说明 645753
邀请新用户注册赠送积分活动 619548