期刊:Social Science Research Network [Social Science Electronic Publishing] 日期:2022-01-01
标识
DOI:10.2139/ssrn.4263646
摘要
The electron storage quantities and electron transfer rate of the reductants are the most critical factors to determine the contaminants degradation in aqueous solution. Zero-valent iron (Fe0) has been considered as a potential reducing agent due to its considerable amount of electron storage, and a variety of modification methods have been explored to strengthen the low electron transfer rate of the Fe0 in the past 30 years. In this study, Fe0-Fe3O4-BM was prepared by ball milling with ethylene glycol as a liquid grinding aid for the reduction of Cr(VI). In the batch experiment with pH = 3.0, C0= 30 mg L-1 and solid-liquid ratio = 1 g L-1, the Cr(VI) removal rate nearly 100 % for Fe0-Fe3O4-BM was reached, significantly higher than 38.9 % and 5.3 % respectively for Fe0 and Fe3O4, with the Cr(VI) removal capacity exceeding its theoretial sum from individual milled Fe0 or Fe3O4. The removal process conformed with pseudo-second-order kinetic, implying that electron transport was the principle limiting step. Semiconductor properties of Fe3O4 played a decisive role in the iron composites, reflecting the greater electron transfer rate and lower resistance of Fe0-Fe3O4-BM. This study revealed that the synthesised Fe0-Fe3O4-BM composite showed a splendid synergy between the abundant electron storage of Fe0 and the fast electron transfer of Fe3O4, with micro-nano structure prepared by wet ball milling providing a highly effective reagent with a large-scale production potential for in-situ injection based groundwater remediation.