Environmental exposures in machine learning and data mining approaches to diabetes etiology: A scoping review

糖尿病前期 计算机科学 2型糖尿病 机器学习 疾病 病因学 数据科学 糖尿病 人工智能 生物信息学 医学 病理 生物 内分泌学
作者
Sejal Mistry,Naomi O. Riches,Ramkiran Gouripeddi,Julio C. Facelli
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:135: 102461-102461 被引量:6
标识
DOI:10.1016/j.artmed.2022.102461
摘要

Environmental exposures are implicated in diabetes etiology, but are poorly understood due to disease heterogeneity, complexity of exposures, and analytical challenges. Machine learning and data mining are artificial intelligence methods that can address these limitations. Despite their increasing adoption in etiology and prediction of diabetes research, the types of methods and exposures analyzed have not been thoroughly reviewed.We aimed to review articles that implemented machine learning and data mining methods to understand environmental exposures in diabetes etiology and disease prediction.We queried PubMed and Scopus databases for machine learning and data mining studies that used environmental exposures to understand diabetes etiology on September 19th, 2022. Exposures were classified into specific external, general external, or internal exposures. We reviewed machine learning and data mining methods and characterized the scope of environmental exposures studied in the etiology of general diabetes, type 1 diabetes, type 2 diabetes, and other types of diabetes.We identified 44 articles for inclusion. Specific external exposures were the most common exposures studied, and supervised models were the most common methods used. Well-established specific external exposures of low physical activity, high cholesterol, and high triglycerides were predictive of general diabetes, type 2 diabetes, and prediabetes, while novel metabolic and gut microbiome biomarkers were implicated in type 1 diabetes.The use of machine learning and data mining methods to elucidate environmental triggers of diabetes was largely limited to well-established risk factors identified using easily explainable and interpretable models. Future studies should seek to leverage machine learning and data mining to explore the temporality and co-occurrence of multiple exposures and further evaluate the role of general external and internal exposures in diabetes etiology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Salamenda完成签到,获得积分10
2秒前
2秒前
科研通AI2S应助哒哒采纳,获得10
2秒前
勤恳的往事完成签到 ,获得积分10
3秒前
pxptmac发布了新的文献求助10
3秒前
秦嘉旎完成签到,获得积分10
4秒前
学习通完成签到,获得积分10
4秒前
BK2008完成签到,获得积分10
4秒前
刻苦小鸭子完成签到,获得积分10
4秒前
晴天霹雳3732完成签到,获得积分0
4秒前
5秒前
Akim应助qly采纳,获得30
6秒前
daguan完成签到,获得积分10
6秒前
7秒前
小林完成签到,获得积分10
7秒前
南城以南完成签到,获得积分10
8秒前
勤奋尔丝完成签到 ,获得积分10
8秒前
wjy2to2完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
胡图图完成签到,获得积分10
8秒前
9秒前
从容藏花完成签到,获得积分20
9秒前
10秒前
AR完成签到,获得积分10
10秒前
wsg完成签到,获得积分10
10秒前
小薛完成签到,获得积分10
11秒前
研友_VZG7GZ应助XIAOBAI采纳,获得10
11秒前
打打应助豆豆小baby采纳,获得10
12秒前
kellen完成签到,获得积分10
13秒前
郭mm完成签到,获得积分10
13秒前
14秒前
Hakunay发布了新的文献求助10
14秒前
Wrong完成签到,获得积分10
14秒前
窝窝头完成签到,获得积分10
15秒前
科研通AI5应助anny2022采纳,获得10
15秒前
fuxiao完成签到 ,获得积分10
16秒前
灵巧谷秋完成签到,获得积分10
16秒前
李Li完成签到 ,获得积分10
17秒前
昕wei完成签到 ,获得积分10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666586
求助须知:如何正确求助?哪些是违规求助? 3225604
关于积分的说明 9763904
捐赠科研通 2935434
什么是DOI,文献DOI怎么找? 1607692
邀请新用户注册赠送积分活动 759302
科研通“疑难数据库(出版商)”最低求助积分说明 735250