Advancing Health Equity Metrics: Estimating the Burden of Lung Cancer Attributed to Known Carcinogens by Socio-economic Position

环境卫生 可归因风险 社会经济地位 人口 医学 肺癌 逻辑回归 病理 内科学
作者
Émilie Counil,Walaa Ismail,Arthur Roblin,Danièle Luce,Christophe Paris
出处
期刊:American Journal of Epidemiology [Oxford University Press]
标识
DOI:10.1093/aje/kwae464
摘要

Abstract Attributable burden of disease estimates reported population-wide do not reflect social disparities in exposures and outcomes. This makes one of the influential scientific tools in public health decision-making insensitive to the distribution of health impacts between socioeconomic groups. Our aim was to use the often-overlooked distributive property of the population attributable fraction (PAF) to quantitatively partition the population burden attributed to know risk factors into subgroups defined by their socioeconomic position (SEP). To illustrate our approach, we focus on lung cancer risk in relation to smoking and exposure to three occupational carcinogens: asbestos, silica dust and diesel motor exhaust. We directly estimate PAFs from a large population-based case-control study using multiple unconditional logistic regression, mutually adjusting for available known risk factors. We partition the PAFs of occupational exposures and smoking according to different SEP indicators: occupational class, prestige and trajectory, and education. Our results show that workplace exposures, smoking and their population health impacts concentrate among lower-SEP groups, a long-known reality that had never been measured through a PAF approach. While attempting to quantify the avoidable burden of diseases, it is useful to partition population-wide into SEP-specific metrics, as the modifiable exposures (behavioural, work-related, environmental) are socially stratified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
逐鹿呦呦完成签到,获得积分10
1秒前
1秒前
tony完成签到,获得积分10
1秒前
斯文酒精灯完成签到,获得积分10
1秒前
旺仔先生完成签到,获得积分0
1秒前
Yanxuan发布了新的文献求助10
2秒前
Xx发布了新的文献求助10
3秒前
搜集达人应助段凯采纳,获得10
4秒前
ding应助花海采纳,获得10
5秒前
5秒前
god13less关注了科研通微信公众号
6秒前
量子星尘发布了新的文献求助10
7秒前
shanage应助冰月雪蝶采纳,获得10
7秒前
xxxx完成签到,获得积分10
8秒前
9秒前
9秒前
Layla完成签到,获得积分10
10秒前
天天快乐应助火星上忆山采纳,获得10
11秒前
自信的绮南完成签到,获得积分10
11秒前
打工研狗发布了新的文献求助30
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
汉堡包应助科研通管家采纳,获得10
13秒前
smottom应助科研通管家采纳,获得10
13秒前
13秒前
情怀应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
smottom应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
Zane应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
13秒前
Zane应助科研通管家采纳,获得10
13秒前
刘星星完成签到 ,获得积分10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
13秒前
tyrtyr应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775480
求助须知:如何正确求助?哪些是违规求助? 5624445
关于积分的说明 15438830
捐赠科研通 4907762
什么是DOI,文献DOI怎么找? 2640954
邀请新用户注册赠送积分活动 1588765
关于科研通互助平台的介绍 1543627