Durian: A Comprehensive Benchmark for Structure-Based 3D Molecular Generation

计算机科学 水准点(测量) 人工智能 计算生物学 生物 地图学 地理
作者
Dou Nie,Huifeng Zhao,Odin Zhang,Gaoqi Weng,Hui Zhang,Jieyu Jin,Haitao Lin,Yufei Huang,Liwei Liu,Dan Li,Tingjun Hou,Yu Kang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (1): 173-186 被引量:2
标识
DOI:10.1021/acs.jcim.4c02232
摘要

Three-dimensional (3D) molecular generation models employ deep neural networks to simultaneously generate both topological representation and molecular conformations. Due to their advantages in utilizing the structural and interaction information on targets, as well as their reduced reliance on existing bioactivity data, these models have attracted widespread attention. However, limited training and testing data sets and the unexpected biases inherent in single evaluation metrics pose a significant challenge in comparing these models in practical settings. In this work, we proposed Durian, an evaluation framework for structure-based 3D molecular generation that incorporates protein–ligand data with experimental affinity and a comprehensive array of physicochemical and geometric metrics. The benchmark tasks encompass assessing the capability of models to reproduce the property distribution of training sets, generate molecules with rational distributions of drug-related properties, and exhibit potential high affinity toward given targets. Binding affinities were evaluated using three independent docking methods (QuickVina2, Surflex and Gnina) with both "Dock" and "Score" modes to reduce false positives arising from conformational searches or scoring functions. Specifically, we applied Durian to six 3D molecular generation methods: LiGAN, Pocket2Mol, DiffSBDD, SBDD, GraphBP, and SurfGen. While most methods demonstrated the ability to generate drug-like small molecules with reasonable physicochemical properties, they exhibited varying degrees of limitations in balancing novelty, structural rationality, and synthetic accessibility, thereby constraining their practical applications in drug discovery. Based on a total of 17 metrics, Durian highlights the importance of multiobjective optimization in 3D molecular generation methods. For instance, SurfGen and SBDD showed relatively comprehensive performance but could benefit from further improvements in molecular conformational rationality. Our evaluation framework is expected to provide meaningful guidance for the selection, optimization, and application of 3D generative models in practical drug design tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmm4完成签到 ,获得积分10
1秒前
搜索文献发布了新的文献求助10
2秒前
2秒前
2秒前
汉堡包应助肥肠的枣糕啊采纳,获得10
2秒前
pangboo发布了新的文献求助20
3秒前
4秒前
4秒前
Hcr发布了新的文献求助30
5秒前
李爱国应助年轻的夕阳采纳,获得10
6秒前
7秒前
我是屈原在世完成签到,获得积分10
7秒前
8秒前
8秒前
南橘完成签到,获得积分10
8秒前
笨笨发布了新的文献求助10
8秒前
脑洞疼应助超级煎饼采纳,获得10
8秒前
魔幻灵竹发布了新的文献求助50
8秒前
9秒前
小马甲应助甜甜亦丝采纳,获得10
9秒前
科研通AI5应助小郭采纳,获得10
10秒前
11秒前
tao发布了新的文献求助10
12秒前
刘建伟发布了新的文献求助10
12秒前
Orange应助谨慎的雨梅采纳,获得10
12秒前
13秒前
13秒前
WJ完成签到,获得积分10
13秒前
成就的艳一应助zz采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
可爱的函函应助浪里白条采纳,获得10
14秒前
14秒前
Jasper应助chechang采纳,获得10
14秒前
am完成签到,获得积分10
15秒前
15秒前
15秒前
笨笨完成签到,获得积分10
15秒前
研友_nEWaD8发布了新的文献求助10
16秒前
亲情之友发布了新的文献求助10
17秒前
一一完成签到,获得积分20
17秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125100
求助须知:如何正确求助?哪些是违规求助? 4329107
关于积分的说明 13489886
捐赠科研通 4163829
什么是DOI,文献DOI怎么找? 2282591
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222983