Durian: A Comprehensive Benchmark for Structure-Based 3D Molecular Generation

计算机科学 水准点(测量) 人工智能 计算生物学 生物 地图学 地理
作者
Dou Nie,Huifeng Zhao,Odin Zhang,Gaoqi Weng,Hui Zhang,Jieyu Jin,Haitao Lin,Yufei Huang,Liwei Liu,Dan Li,Tingjun Hou,Yu Kang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (1): 173-186 被引量:2
标识
DOI:10.1021/acs.jcim.4c02232
摘要

Three-dimensional (3D) molecular generation models employ deep neural networks to simultaneously generate both topological representation and molecular conformations. Due to their advantages in utilizing the structural and interaction information on targets, as well as their reduced reliance on existing bioactivity data, these models have attracted widespread attention. However, limited training and testing data sets and the unexpected biases inherent in single evaluation metrics pose a significant challenge in comparing these models in practical settings. In this work, we proposed Durian, an evaluation framework for structure-based 3D molecular generation that incorporates protein–ligand data with experimental affinity and a comprehensive array of physicochemical and geometric metrics. The benchmark tasks encompass assessing the capability of models to reproduce the property distribution of training sets, generate molecules with rational distributions of drug-related properties, and exhibit potential high affinity toward given targets. Binding affinities were evaluated using three independent docking methods (QuickVina2, Surflex and Gnina) with both "Dock" and "Score" modes to reduce false positives arising from conformational searches or scoring functions. Specifically, we applied Durian to six 3D molecular generation methods: LiGAN, Pocket2Mol, DiffSBDD, SBDD, GraphBP, and SurfGen. While most methods demonstrated the ability to generate drug-like small molecules with reasonable physicochemical properties, they exhibited varying degrees of limitations in balancing novelty, structural rationality, and synthetic accessibility, thereby constraining their practical applications in drug discovery. Based on a total of 17 metrics, Durian highlights the importance of multiobjective optimization in 3D molecular generation methods. For instance, SurfGen and SBDD showed relatively comprehensive performance but could benefit from further improvements in molecular conformational rationality. Our evaluation framework is expected to provide meaningful guidance for the selection, optimization, and application of 3D generative models in practical drug design tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于彦祖应助克劳德采纳,获得30
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
baihehuakai发布了新的文献求助10
3秒前
3秒前
山复尔尔完成签到 ,获得积分10
3秒前
3秒前
4秒前
4秒前
vv的平行宇宙完成签到,获得积分10
4秒前
YWR完成签到,获得积分10
4秒前
复杂惜霜完成签到,获得积分20
4秒前
5秒前
Ch_7发布了新的文献求助10
5秒前
福路完成签到 ,获得积分10
5秒前
5秒前
JamesPei应助奋斗水香采纳,获得10
5秒前
定仙游完成签到,获得积分10
6秒前
6秒前
在这无人的城堡肆无忌惮的奔跑完成签到,获得积分0
6秒前
陶醉清完成签到,获得积分10
6秒前
风中的绣连完成签到,获得积分10
7秒前
华仔应助要减肥的chao采纳,获得10
7秒前
CTT完成签到,获得积分10
7秒前
8秒前
鹂鹂复霖霖完成签到,获得积分10
8秒前
秀丽绿真完成签到,获得积分10
8秒前
8秒前
小雨大树完成签到,获得积分10
8秒前
Harry完成签到,获得积分0
9秒前
量子星尘发布了新的文献求助10
9秒前
上官若男应助光亮的立果采纳,获得10
9秒前
qvqtttttt完成签到,获得积分10
9秒前
念心发布了新的文献求助10
10秒前
风趣的鸡翅完成签到,获得积分10
10秒前
10秒前
TONG发布了新的文献求助10
10秒前
研友_VZG7GZ应助七哒蹦采纳,获得10
11秒前
桐桐应助Nn采纳,获得10
11秒前
甜甜球发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665044
求助须知:如何正确求助?哪些是违规求助? 4874526
关于积分的说明 15111251
捐赠科研通 4824178
什么是DOI,文献DOI怎么找? 2582656
邀请新用户注册赠送积分活动 1536612
关于科研通互助平台的介绍 1495236