已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Durian: A Comprehensive Benchmark for Structure-Based 3D Molecular Generation

计算机科学 水准点(测量) 人工智能 计算生物学 生物 地图学 地理
作者
Dou Nie,Huifeng Zhao,Odin Zhang,Gaoqi Weng,Hui Zhang,Jieyu Jin,Haitao Lin,Yufei Huang,Liwei Liu,Dan Li,Tingjun Hou,Yu Kang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (1): 173-186
标识
DOI:10.1021/acs.jcim.4c02232
摘要

Three-dimensional (3D) molecular generation models employ deep neural networks to simultaneously generate both topological representation and molecular conformations. Due to their advantages in utilizing the structural and interaction information on targets, as well as their reduced reliance on existing bioactivity data, these models have attracted widespread attention. However, limited training and testing data sets and the unexpected biases inherent in single evaluation metrics pose a significant challenge in comparing these models in practical settings. In this work, we proposed Durian, an evaluation framework for structure-based 3D molecular generation that incorporates protein–ligand data with experimental affinity and a comprehensive array of physicochemical and geometric metrics. The benchmark tasks encompass assessing the capability of models to reproduce the property distribution of training sets, generate molecules with rational distributions of drug-related properties, and exhibit potential high affinity toward given targets. Binding affinities were evaluated using three independent docking methods (QuickVina2, Surflex and Gnina) with both "Dock" and "Score" modes to reduce false positives arising from conformational searches or scoring functions. Specifically, we applied Durian to six 3D molecular generation methods: LiGAN, Pocket2Mol, DiffSBDD, SBDD, GraphBP, and SurfGen. While most methods demonstrated the ability to generate drug-like small molecules with reasonable physicochemical properties, they exhibited varying degrees of limitations in balancing novelty, structural rationality, and synthetic accessibility, thereby constraining their practical applications in drug discovery. Based on a total of 17 metrics, Durian highlights the importance of multiobjective optimization in 3D molecular generation methods. For instance, SurfGen and SBDD showed relatively comprehensive performance but could benefit from further improvements in molecular conformational rationality. Our evaluation framework is expected to provide meaningful guidance for the selection, optimization, and application of 3D generative models in practical drug design tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
碳碳焢烃发布了新的文献求助10
5秒前
Z可完成签到 ,获得积分10
6秒前
9秒前
发电的皮卡丘完成签到,获得积分10
11秒前
yi完成签到,获得积分10
15秒前
17秒前
今后应助绍成采纳,获得10
17秒前
小巧念露完成签到,获得积分10
19秒前
顺利白柏完成签到 ,获得积分10
20秒前
21秒前
okt111完成签到,获得积分10
21秒前
22秒前
黄毅发布了新的文献求助10
22秒前
敏感夏烟完成签到 ,获得积分10
23秒前
shuhaha完成签到,获得积分10
26秒前
leolee完成签到,获得积分10
26秒前
冷静新烟发布了新的文献求助10
27秒前
乐观的蜗牛完成签到 ,获得积分10
28秒前
Akim应助miemie采纳,获得10
29秒前
自然剑通完成签到,获得积分10
29秒前
深情安青应助fanghao采纳,获得10
30秒前
fransiccarey完成签到,获得积分10
38秒前
42秒前
45秒前
47秒前
48秒前
48秒前
无情向薇应助小巧念露采纳,获得10
51秒前
春眠不觉晓完成签到,获得积分10
52秒前
小杨发布了新的文献求助10
52秒前
Chen发布了新的文献求助10
52秒前
雪花精灵发布了新的文献求助10
52秒前
画月关注了科研通微信公众号
56秒前
Qintt完成签到 ,获得积分10
56秒前
李志全完成签到 ,获得积分10
57秒前
xx完成签到 ,获得积分10
58秒前
h0jian09完成签到,获得积分10
59秒前
1分钟前
leolee发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959957
求助须知:如何正确求助?哪些是违规求助? 3506202
关于积分的说明 11128332
捐赠科研通 3238193
什么是DOI,文献DOI怎么找? 1789549
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803042