亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrated Workflow for High-Throughput Formulation and Characterization of Battery Electrolytes

工作流程 吞吐量 电池(电) 表征(材料科学) 计算机科学 电解质 材料科学 纳米技术 化学 操作系统 数据库 物理 电极 无线 功率(物理) 物理化学 量子力学
作者
Guilherme Vieira da Motta Missaka,Jeffrey Lopez
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (3): 400-400
标识
DOI:10.1149/ma2024-023400mtgabs
摘要

Developing novel electrolyte formulations is a major challenge to the adoption of new electrode chemistries in electrochemical energy storage devices. Electrolyte engineering is a massive field, with hundreds of possible solvents, salts, and additives to choose from. The many building blocks lead to an immense combinatorial problem and enormous parameter space for researchers to search within. Computational tools are a promising solution to the issue, with models that can predict electrolyte properties using from machine learning, 1 thermodynamic calculations, 2 and molecular dynamics. 3 Though incredibly powerful, these calculations can be very computationally expensive, highly specific to a certain subset of electrolytes and often require experimental training data or validation. The availability of electrolyte datasets is currently limited to computational or small experimental datasets, and the absence of standardization in the field makes it challenging to extract a cohesive dataset from the literature. Therefore, there is a need for experimental tools to generate new electrolyte datasets for powerful data analysis techniques to enable novel battery chemistries. In this presentation, we will discuss an automated system for electrolyte formulation and high throughput characterization of electrochemical stability, Coulombic efficiency, and ionic conductivity. Existing automated systems lack solid dispensing and are thus limited in the formulation space that is accessible by automation. 4,5 Our design utilizes a robotic arm to handle and dispense solid and liquid precursors to formulate electrolyte samples and heating and stirring capabilities for electrolyte mixing. Post formulation, the robotic platform utilizes custom-made characterization cells to facilitate high-throughput analysis. Specifically, we have designed a microplate-style Coulombic efficiency testing cell and a series of flow-through sensors to collect ionic conductivity and electrochemical stability information that only utilizes a small electrolyte volume. Initial studies with the platform target aqueous electrolytes to enable ease of troubleshooting outside of a glovebox. Here we screen a variety of salts including LiOAc, LiNO 3 , LiSO 4 , LiTFSI and LiFSI. The chosen salts contain anions spanning a wide range of the Hofmeister series, which classifies them between chaotropic (structure breaking) and kosmotropic (structure making). Chaotropic anions, such as TFSI - and FSI - , affect the water bonding structure, disrupting it, leading to an increase in the electrochemical stability window of the electrolyte. 6 We find that we can explore and expand this phenomenon in combinations of the lithium salts in our high-throughput system. We aim to leverage this high-throughput electrolyte characterization platform to produce high quality, consistent, open-source databases of electrolyte properties that we envision will assist and accelerate the entire field’s research. Our long-term goal is to use the comprehensive data generated to make fundamental advances in developing new electrolyte models that will allow researchers to quickly predict optimal formulations and device performance. 1. S. C. Kim et al., Proceedings of the National Academy of Sciences, 120, e2214357120 (2023). 2. A. Dave, K. L. Gering, J. M. Mitchell, J. Whitacre, and V. Viswanathan, J. Electrochem. Soc., 167, 013514 (2019). 3. B. Ravikumar, M. Mynam, and B. Rai, J. Phys. Chem. C, 122, 8173–8181 (2018). 4. A. Dave et al., arXiv:2111.14786 [cs] (2021) http://arxiv.org/abs/2111.14786. 5. S. Matsuda, K. Nishioka, and S. Nakanishi, Sci Rep, 9, 6211 (2019). 6. D. Reber, R. Grissa, M. Becker, R.-S. Kühnel, and C. Battaglia, Advanced Energy Materials, 11, 2002913 (2021).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
34秒前
顺利若山完成签到,获得积分10
46秒前
小蘑菇应助科研通管家采纳,获得10
47秒前
47秒前
59秒前
Lh发布了新的文献求助10
1分钟前
qyp发布了新的文献求助10
1分钟前
传奇3应助三哥采纳,获得30
1分钟前
1分钟前
leoan完成签到,获得积分10
1分钟前
阔达雨灵发布了新的文献求助10
1分钟前
1分钟前
勤能补拙关注了科研通微信公众号
1分钟前
1分钟前
三哥发布了新的文献求助30
1分钟前
1分钟前
勤能补拙发布了新的文献求助10
2分钟前
bkagyin应助呆萌的仇天采纳,获得10
2分钟前
2分钟前
Run发布了新的文献求助30
2分钟前
Chris完成签到 ,获得积分0
2分钟前
caca完成签到,获得积分0
2分钟前
鬼笔环肽应助三哥采纳,获得30
2分钟前
2分钟前
3分钟前
trophozoite完成签到 ,获得积分10
3分钟前
鬼笔环肽应助Zcl采纳,获得50
3分钟前
3分钟前
乐乐应助keyantong采纳,获得10
3分钟前
chengxue发布了新的文献求助10
3分钟前
Nick_YFWS完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
www完成签到 ,获得积分10
3分钟前
Bellona发布了新的文献求助10
3分钟前
3分钟前
浮游应助Bellona采纳,获得30
3分钟前
aa111完成签到,获得积分10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5148439
求助须知:如何正确求助?哪些是违规求助? 4344765
关于积分的说明 13529829
捐赠科研通 4186787
什么是DOI,文献DOI怎么找? 2295877
邀请新用户注册赠送积分活动 1296291
关于科研通互助平台的介绍 1240104