Integrated Workflow for High-Throughput Formulation and Characterization of Battery Electrolytes

工作流程 吞吐量 电池(电) 表征(材料科学) 计算机科学 电解质 材料科学 纳米技术 化学 操作系统 数据库 物理 电极 无线 功率(物理) 物理化学 量子力学
作者
Guilherme Vieira da Motta Missaka,Jeffrey Lopez
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (3): 400-400
标识
DOI:10.1149/ma2024-023400mtgabs
摘要

Developing novel electrolyte formulations is a major challenge to the adoption of new electrode chemistries in electrochemical energy storage devices. Electrolyte engineering is a massive field, with hundreds of possible solvents, salts, and additives to choose from. The many building blocks lead to an immense combinatorial problem and enormous parameter space for researchers to search within. Computational tools are a promising solution to the issue, with models that can predict electrolyte properties using from machine learning, 1 thermodynamic calculations, 2 and molecular dynamics. 3 Though incredibly powerful, these calculations can be very computationally expensive, highly specific to a certain subset of electrolytes and often require experimental training data or validation. The availability of electrolyte datasets is currently limited to computational or small experimental datasets, and the absence of standardization in the field makes it challenging to extract a cohesive dataset from the literature. Therefore, there is a need for experimental tools to generate new electrolyte datasets for powerful data analysis techniques to enable novel battery chemistries. In this presentation, we will discuss an automated system for electrolyte formulation and high throughput characterization of electrochemical stability, Coulombic efficiency, and ionic conductivity. Existing automated systems lack solid dispensing and are thus limited in the formulation space that is accessible by automation. 4,5 Our design utilizes a robotic arm to handle and dispense solid and liquid precursors to formulate electrolyte samples and heating and stirring capabilities for electrolyte mixing. Post formulation, the robotic platform utilizes custom-made characterization cells to facilitate high-throughput analysis. Specifically, we have designed a microplate-style Coulombic efficiency testing cell and a series of flow-through sensors to collect ionic conductivity and electrochemical stability information that only utilizes a small electrolyte volume. Initial studies with the platform target aqueous electrolytes to enable ease of troubleshooting outside of a glovebox. Here we screen a variety of salts including LiOAc, LiNO 3 , LiSO 4 , LiTFSI and LiFSI. The chosen salts contain anions spanning a wide range of the Hofmeister series, which classifies them between chaotropic (structure breaking) and kosmotropic (structure making). Chaotropic anions, such as TFSI - and FSI - , affect the water bonding structure, disrupting it, leading to an increase in the electrochemical stability window of the electrolyte. 6 We find that we can explore and expand this phenomenon in combinations of the lithium salts in our high-throughput system. We aim to leverage this high-throughput electrolyte characterization platform to produce high quality, consistent, open-source databases of electrolyte properties that we envision will assist and accelerate the entire field’s research. Our long-term goal is to use the comprehensive data generated to make fundamental advances in developing new electrolyte models that will allow researchers to quickly predict optimal formulations and device performance. 1. S. C. Kim et al., Proceedings of the National Academy of Sciences, 120, e2214357120 (2023). 2. A. Dave, K. L. Gering, J. M. Mitchell, J. Whitacre, and V. Viswanathan, J. Electrochem. Soc., 167, 013514 (2019). 3. B. Ravikumar, M. Mynam, and B. Rai, J. Phys. Chem. C, 122, 8173–8181 (2018). 4. A. Dave et al., arXiv:2111.14786 [cs] (2021) http://arxiv.org/abs/2111.14786. 5. S. Matsuda, K. Nishioka, and S. Nakanishi, Sci Rep, 9, 6211 (2019). 6. D. Reber, R. Grissa, M. Becker, R.-S. Kühnel, and C. Battaglia, Advanced Energy Materials, 11, 2002913 (2021).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sugar完成签到,获得积分10
1秒前
天天快乐应助LRJ采纳,获得10
1秒前
CipherSage应助陈少华采纳,获得10
1秒前
2秒前
2秒前
3秒前
Wang发布了新的文献求助10
3秒前
3秒前
酷波er应助lan采纳,获得10
4秒前
4秒前
Owen应助xiaoling采纳,获得10
5秒前
6秒前
小蘑菇应助RICH采纳,获得10
6秒前
过时的松鼠完成签到,获得积分20
7秒前
乐乐应助夕荀采纳,获得10
7秒前
yinjs158完成签到,获得积分10
7秒前
余樱发布了新的文献求助10
8秒前
8秒前
简单乐荷完成签到,获得积分10
8秒前
妮子发布了新的文献求助10
9秒前
里里发布了新的文献求助10
9秒前
9秒前
科研通AI6应助Enchanted采纳,获得10
11秒前
肚肚发布了新的文献求助10
11秒前
12秒前
李新颖发布了新的文献求助10
12秒前
chem001发布了新的文献求助10
12秒前
12秒前
小瑞完成签到 ,获得积分10
13秒前
14秒前
大个应助清欲采纳,获得10
14秒前
烟花应助鳗鱼怀柔采纳,获得10
15秒前
16秒前
16秒前
16秒前
Sylvia完成签到 ,获得积分10
17秒前
17秒前
17秒前
18秒前
光头哥完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589486
求助须知:如何正确求助?哪些是违规求助? 4674213
关于积分的说明 14792351
捐赠科研通 4628515
什么是DOI,文献DOI怎么找? 2532297
邀请新用户注册赠送积分活动 1500964
关于科研通互助平台的介绍 1468454