亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrated Workflow for High-Throughput Formulation and Characterization of Battery Electrolytes

工作流程 吞吐量 电池(电) 表征(材料科学) 计算机科学 电解质 材料科学 纳米技术 化学 操作系统 数据库 物理 电极 无线 功率(物理) 物理化学 量子力学
作者
Guilherme Vieira da Motta Missaka,Jeffrey Lopez
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (3): 400-400
标识
DOI:10.1149/ma2024-023400mtgabs
摘要

Developing novel electrolyte formulations is a major challenge to the adoption of new electrode chemistries in electrochemical energy storage devices. Electrolyte engineering is a massive field, with hundreds of possible solvents, salts, and additives to choose from. The many building blocks lead to an immense combinatorial problem and enormous parameter space for researchers to search within. Computational tools are a promising solution to the issue, with models that can predict electrolyte properties using from machine learning, 1 thermodynamic calculations, 2 and molecular dynamics. 3 Though incredibly powerful, these calculations can be very computationally expensive, highly specific to a certain subset of electrolytes and often require experimental training data or validation. The availability of electrolyte datasets is currently limited to computational or small experimental datasets, and the absence of standardization in the field makes it challenging to extract a cohesive dataset from the literature. Therefore, there is a need for experimental tools to generate new electrolyte datasets for powerful data analysis techniques to enable novel battery chemistries. In this presentation, we will discuss an automated system for electrolyte formulation and high throughput characterization of electrochemical stability, Coulombic efficiency, and ionic conductivity. Existing automated systems lack solid dispensing and are thus limited in the formulation space that is accessible by automation. 4,5 Our design utilizes a robotic arm to handle and dispense solid and liquid precursors to formulate electrolyte samples and heating and stirring capabilities for electrolyte mixing. Post formulation, the robotic platform utilizes custom-made characterization cells to facilitate high-throughput analysis. Specifically, we have designed a microplate-style Coulombic efficiency testing cell and a series of flow-through sensors to collect ionic conductivity and electrochemical stability information that only utilizes a small electrolyte volume. Initial studies with the platform target aqueous electrolytes to enable ease of troubleshooting outside of a glovebox. Here we screen a variety of salts including LiOAc, LiNO 3 , LiSO 4 , LiTFSI and LiFSI. The chosen salts contain anions spanning a wide range of the Hofmeister series, which classifies them between chaotropic (structure breaking) and kosmotropic (structure making). Chaotropic anions, such as TFSI - and FSI - , affect the water bonding structure, disrupting it, leading to an increase in the electrochemical stability window of the electrolyte. 6 We find that we can explore and expand this phenomenon in combinations of the lithium salts in our high-throughput system. We aim to leverage this high-throughput electrolyte characterization platform to produce high quality, consistent, open-source databases of electrolyte properties that we envision will assist and accelerate the entire field’s research. Our long-term goal is to use the comprehensive data generated to make fundamental advances in developing new electrolyte models that will allow researchers to quickly predict optimal formulations and device performance. 1. S. C. Kim et al., Proceedings of the National Academy of Sciences, 120, e2214357120 (2023). 2. A. Dave, K. L. Gering, J. M. Mitchell, J. Whitacre, and V. Viswanathan, J. Electrochem. Soc., 167, 013514 (2019). 3. B. Ravikumar, M. Mynam, and B. Rai, J. Phys. Chem. C, 122, 8173–8181 (2018). 4. A. Dave et al., arXiv:2111.14786 [cs] (2021) http://arxiv.org/abs/2111.14786. 5. S. Matsuda, K. Nishioka, and S. Nakanishi, Sci Rep, 9, 6211 (2019). 6. D. Reber, R. Grissa, M. Becker, R.-S. Kühnel, and C. Battaglia, Advanced Energy Materials, 11, 2002913 (2021).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
10秒前
Ecokarster完成签到,获得积分10
22秒前
楚楚完成签到 ,获得积分10
26秒前
所所应助鳄鱼不做饿梦采纳,获得50
27秒前
111完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
田様应助郭楠楠采纳,获得30
1分钟前
2分钟前
2分钟前
科目三应助科研通管家采纳,获得10
2分钟前
郭楠楠发布了新的文献求助30
2分钟前
2分钟前
Xyyy完成签到,获得积分10
2分钟前
RED发布了新的文献求助10
2分钟前
满天星发布了新的文献求助10
3分钟前
3分钟前
郭楠楠发布了新的文献求助10
3分钟前
缨绒完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
满天星完成签到 ,获得积分10
4分钟前
zqr发布了新的文献求助10
4分钟前
Hello应助Raunio采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
abdo完成签到,获得积分10
5分钟前
kuoping完成签到,获得积分0
5分钟前
小蘑菇应助成太采纳,获得10
5分钟前
万能图书馆应助zxl采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
郭楠楠发布了新的文献求助10
5分钟前
5分钟前
清泉发布了新的文献求助10
5分钟前
5分钟前
成太发布了新的文献求助10
5分钟前
zxl发布了新的文献求助10
5分钟前
CodeCraft应助郭楠楠采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664438
求助须知:如何正确求助?哪些是违规求助? 4861169
关于积分的说明 15107642
捐赠科研通 4822995
什么是DOI,文献DOI怎么找? 2581824
邀请新用户注册赠送积分活动 1536001
关于科研通互助平台的介绍 1494359