Integrated Workflow for High-Throughput Formulation and Characterization of Battery Electrolytes

工作流程 吞吐量 电池(电) 表征(材料科学) 计算机科学 电解质 材料科学 纳米技术 化学 操作系统 数据库 物理 电极 无线 物理化学 功率(物理) 量子力学
作者
Guilherme Vieira da Motta Missaka,Jeffrey Lopez
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (3): 400-400
标识
DOI:10.1149/ma2024-023400mtgabs
摘要

Developing novel electrolyte formulations is a major challenge to the adoption of new electrode chemistries in electrochemical energy storage devices. Electrolyte engineering is a massive field, with hundreds of possible solvents, salts, and additives to choose from. The many building blocks lead to an immense combinatorial problem and enormous parameter space for researchers to search within. Computational tools are a promising solution to the issue, with models that can predict electrolyte properties using from machine learning, 1 thermodynamic calculations, 2 and molecular dynamics. 3 Though incredibly powerful, these calculations can be very computationally expensive, highly specific to a certain subset of electrolytes and often require experimental training data or validation. The availability of electrolyte datasets is currently limited to computational or small experimental datasets, and the absence of standardization in the field makes it challenging to extract a cohesive dataset from the literature. Therefore, there is a need for experimental tools to generate new electrolyte datasets for powerful data analysis techniques to enable novel battery chemistries. In this presentation, we will discuss an automated system for electrolyte formulation and high throughput characterization of electrochemical stability, Coulombic efficiency, and ionic conductivity. Existing automated systems lack solid dispensing and are thus limited in the formulation space that is accessible by automation. 4,5 Our design utilizes a robotic arm to handle and dispense solid and liquid precursors to formulate electrolyte samples and heating and stirring capabilities for electrolyte mixing. Post formulation, the robotic platform utilizes custom-made characterization cells to facilitate high-throughput analysis. Specifically, we have designed a microplate-style Coulombic efficiency testing cell and a series of flow-through sensors to collect ionic conductivity and electrochemical stability information that only utilizes a small electrolyte volume. Initial studies with the platform target aqueous electrolytes to enable ease of troubleshooting outside of a glovebox. Here we screen a variety of salts including LiOAc, LiNO 3 , LiSO 4 , LiTFSI and LiFSI. The chosen salts contain anions spanning a wide range of the Hofmeister series, which classifies them between chaotropic (structure breaking) and kosmotropic (structure making). Chaotropic anions, such as TFSI - and FSI - , affect the water bonding structure, disrupting it, leading to an increase in the electrochemical stability window of the electrolyte. 6 We find that we can explore and expand this phenomenon in combinations of the lithium salts in our high-throughput system. We aim to leverage this high-throughput electrolyte characterization platform to produce high quality, consistent, open-source databases of electrolyte properties that we envision will assist and accelerate the entire field’s research. Our long-term goal is to use the comprehensive data generated to make fundamental advances in developing new electrolyte models that will allow researchers to quickly predict optimal formulations and device performance. 1. S. C. Kim et al., Proceedings of the National Academy of Sciences, 120, e2214357120 (2023). 2. A. Dave, K. L. Gering, J. M. Mitchell, J. Whitacre, and V. Viswanathan, J. Electrochem. Soc., 167, 013514 (2019). 3. B. Ravikumar, M. Mynam, and B. Rai, J. Phys. Chem. C, 122, 8173–8181 (2018). 4. A. Dave et al., arXiv:2111.14786 [cs] (2021) http://arxiv.org/abs/2111.14786. 5. S. Matsuda, K. Nishioka, and S. Nakanishi, Sci Rep, 9, 6211 (2019). 6. D. Reber, R. Grissa, M. Becker, R.-S. Kühnel, and C. Battaglia, Advanced Energy Materials, 11, 2002913 (2021).

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ddj完成签到 ,获得积分10
1秒前
5秒前
5秒前
zzk完成签到,获得积分10
6秒前
李哈哈发布了新的文献求助10
6秒前
现代的妍发布了新的文献求助10
9秒前
13秒前
科研通AI2S应助小吕小吕采纳,获得10
14秒前
传奇3应助小吕小吕采纳,获得10
14秒前
zhonghang2024应助小吕小吕采纳,获得10
15秒前
科研通AI2S应助小吕小吕采纳,获得10
15秒前
顾矜应助小吕小吕采纳,获得10
15秒前
zho应助小吕小吕采纳,获得10
15秒前
斯文败类应助小吕小吕采纳,获得10
15秒前
传奇3应助小吕小吕采纳,获得10
15秒前
赘婿应助小吕小吕采纳,获得10
15秒前
zho应助小吕小吕采纳,获得10
15秒前
kid1912应助HonamC采纳,获得30
16秒前
22秒前
22秒前
义气高丽完成签到 ,获得积分10
23秒前
Luos发布了新的文献求助20
23秒前
含蓄的问寒完成签到,获得积分10
25秒前
leiyang49应助Momiji采纳,获得10
25秒前
雪山飞龙发布了新的文献求助10
26秒前
张张发布了新的文献求助10
26秒前
28秒前
所所应助书羽采纳,获得10
28秒前
周芷卉完成签到 ,获得积分10
28秒前
陆海的你发布了新的文献求助10
28秒前
CodeCraft应助欣喜芮采纳,获得10
32秒前
34秒前
34秒前
科研通AI2S应助Luos采纳,获得10
34秒前
35秒前
35秒前
冷傲的xu发布了新的文献求助10
36秒前
hhr完成签到 ,获得积分10
36秒前
雪山飞龙发布了新的文献求助10
36秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387304
求助须知:如何正确求助?哪些是违规求助? 3000155
关于积分的说明 8789582
捐赠科研通 2685932
什么是DOI,文献DOI怎么找? 1471398
科研通“疑难数据库(出版商)”最低求助积分说明 680234
邀请新用户注册赠送积分活动 673020