已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrated Workflow for High-Throughput Formulation and Characterization of Battery Electrolytes

工作流程 吞吐量 电池(电) 表征(材料科学) 计算机科学 电解质 材料科学 纳米技术 化学 操作系统 数据库 物理 电极 无线 物理化学 功率(物理) 量子力学
作者
Guilherme Vieira da Motta Missaka,Jeffrey Lopez
出处
期刊:Meeting abstracts 卷期号:MA2024-02 (3): 400-400
标识
DOI:10.1149/ma2024-023400mtgabs
摘要

Developing novel electrolyte formulations is a major challenge to the adoption of new electrode chemistries in electrochemical energy storage devices. Electrolyte engineering is a massive field, with hundreds of possible solvents, salts, and additives to choose from. The many building blocks lead to an immense combinatorial problem and enormous parameter space for researchers to search within. Computational tools are a promising solution to the issue, with models that can predict electrolyte properties using from machine learning, 1 thermodynamic calculations, 2 and molecular dynamics. 3 Though incredibly powerful, these calculations can be very computationally expensive, highly specific to a certain subset of electrolytes and often require experimental training data or validation. The availability of electrolyte datasets is currently limited to computational or small experimental datasets, and the absence of standardization in the field makes it challenging to extract a cohesive dataset from the literature. Therefore, there is a need for experimental tools to generate new electrolyte datasets for powerful data analysis techniques to enable novel battery chemistries. In this presentation, we will discuss an automated system for electrolyte formulation and high throughput characterization of electrochemical stability, Coulombic efficiency, and ionic conductivity. Existing automated systems lack solid dispensing and are thus limited in the formulation space that is accessible by automation. 4,5 Our design utilizes a robotic arm to handle and dispense solid and liquid precursors to formulate electrolyte samples and heating and stirring capabilities for electrolyte mixing. Post formulation, the robotic platform utilizes custom-made characterization cells to facilitate high-throughput analysis. Specifically, we have designed a microplate-style Coulombic efficiency testing cell and a series of flow-through sensors to collect ionic conductivity and electrochemical stability information that only utilizes a small electrolyte volume. Initial studies with the platform target aqueous electrolytes to enable ease of troubleshooting outside of a glovebox. Here we screen a variety of salts including LiOAc, LiNO 3 , LiSO 4 , LiTFSI and LiFSI. The chosen salts contain anions spanning a wide range of the Hofmeister series, which classifies them between chaotropic (structure breaking) and kosmotropic (structure making). Chaotropic anions, such as TFSI - and FSI - , affect the water bonding structure, disrupting it, leading to an increase in the electrochemical stability window of the electrolyte. 6 We find that we can explore and expand this phenomenon in combinations of the lithium salts in our high-throughput system. We aim to leverage this high-throughput electrolyte characterization platform to produce high quality, consistent, open-source databases of electrolyte properties that we envision will assist and accelerate the entire field’s research. Our long-term goal is to use the comprehensive data generated to make fundamental advances in developing new electrolyte models that will allow researchers to quickly predict optimal formulations and device performance. 1. S. C. Kim et al., Proceedings of the National Academy of Sciences, 120, e2214357120 (2023). 2. A. Dave, K. L. Gering, J. M. Mitchell, J. Whitacre, and V. Viswanathan, J. Electrochem. Soc., 167, 013514 (2019). 3. B. Ravikumar, M. Mynam, and B. Rai, J. Phys. Chem. C, 122, 8173–8181 (2018). 4. A. Dave et al., arXiv:2111.14786 [cs] (2021) http://arxiv.org/abs/2111.14786. 5. S. Matsuda, K. Nishioka, and S. Nakanishi, Sci Rep, 9, 6211 (2019). 6. D. Reber, R. Grissa, M. Becker, R.-S. Kühnel, and C. Battaglia, Advanced Energy Materials, 11, 2002913 (2021).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
今后应助从容的香露采纳,获得10
1秒前
JamesPei应助大鱼采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Yesyes应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
Jgogo发布了新的文献求助10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
1秒前
在水一方应助从容的路灯采纳,获得10
1秒前
Ricky发布了新的文献求助10
2秒前
怕黑面包完成签到 ,获得积分10
3秒前
科研通AI2S应助舒服的美女采纳,获得10
4秒前
潇洒的盼望完成签到 ,获得积分10
6秒前
沧海一声笑完成签到,获得积分10
9秒前
NexusExplorer应助温暖白容采纳,获得10
10秒前
活泼稀完成签到,获得积分10
10秒前
Lucas应助卡塔赫纳采纳,获得10
11秒前
GGBAO发布了新的文献求助10
12秒前
niuma完成签到 ,获得积分10
13秒前
小马甲应助活泼稀采纳,获得10
15秒前
15秒前
20秒前
背后海亦发布了新的文献求助10
22秒前
AIT发布了新的文献求助10
23秒前
23秒前
23秒前
tinglei711发布了新的文献求助10
24秒前
朴实的秋完成签到,获得积分10
25秒前
26秒前
26秒前
27秒前
apple发布了新的文献求助10
29秒前
尊敬秋双完成签到 ,获得积分10
30秒前
英姑应助笨笨善若采纳,获得10
30秒前
温暖白容发布了新的文献求助10
30秒前
30秒前
卡塔赫纳发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968009
求助须知:如何正确求助?哪些是违规求助? 3513050
关于积分的说明 11166132
捐赠科研通 3248187
什么是DOI,文献DOI怎么找? 1794124
邀请新用户注册赠送积分活动 874880
科研通“疑难数据库(出版商)”最低求助积分说明 804610