🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你你。这个春天,让互助之光璀璨绽放!查看详情

TransAnaNet: Transformer‐based anatomy change prediction network for head and neck cancer radiotherapy

头颈部癌 头颈部 放射治疗 医学 剂量学 医学物理学 放射科 外科
作者
Meixu Chen,Kai Wang,Michael Dohopolski,Howard E. Morgan,David J. Sher,Jing Wang
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17655
摘要

Adaptive radiotherapy (ART) can compensate for the dosimetric impact of anatomic change during radiotherapy of head-neck cancer (HNC) patients. However, implementing ART universally poses challenges in clinical workflow and resource allocation, given the variability in patient response and the constraints of available resources. Therefore, the prediction of anatomical change during radiotherapy for HNC patients is of importance to optimize patient clinical benefit and treatment resources. Current studies focus on developing binary ART eligibility classification models to identify patients who would experience significant anatomical change, but these models lack the ability to present the complex patterns and variations in anatomical changes over time. Vision Transformers (ViTs) represent a recent advancement in neural network architectures, utilizing self-attention mechanisms to process image data. Unlike traditional Convolutional Neural Networks (CNNs), ViTs can capture global contextual information more effectively, making them well-suited for image analysis and image generation tasks that involve complex patterns and structures, such as predicting anatomical changes in medical imaging. The purpose of this study is to assess the feasibility of using a ViT-based neural network to predict radiotherapy-induced anatomic change of HNC patients. We retrospectively included 121 HNC patients treated with definitive chemoradiotherapy (CRT) or radiation alone. We collected the planning computed tomography image (pCT), planned dose, cone beam computed tomography images (CBCTs) acquired at the initial treatment (CBCT01) and Fraction 21 (CBCT21), and primary tumor volume (GTVp) and involved nodal volume (GTVn) delineated on both pCT and CBCTs of each patient for model construction and evaluation. A UNet-style Swin-Transformer-based ViT network was designed to learn the spatial correspondence and contextual information from embedded image patches of CT, dose, CBCT01, GTVp, and GTVn. The deformation vector field between CBCT01 and CBCT21 was estimated by the model as the prediction of anatomic change, and deformed CBCT01 was used as the prediction of CBCT21. We also generated binary masks of GTVp, GTVn, and patient body for volumetric change evaluation. We used data from 101 patients for training and validation, and the remaining 20 patients for testing. Image and volumetric similarity metrics including mean square error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), Dice coefficient, and average surface distance were used to measure the similarity between the target image and predicted CBCT. Anatomy change prediction performance of the proposed model was compared to a CNN-based prediction model and a traditional ViT-based prediction model. The predicted image from the proposed method yielded the best similarity to the real image (CBCT21) over pCT, CBCT01, and predicted CBCTs from other comparison models. The average MSE, PSNR, and SSIM between the normalized predicted CBCT and CBCT21 are 0.009, 20.266, and 0.933, while the average Dice coefficient between body mask, GTVp mask, and GTVn mask is 0.972, 0.792, and 0.821, respectively. The proposed method showed promising performance for predicting radiotherapy-induced anatomic change, which has the potential to assist in the decision-making of HNC ART.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级无心完成签到,获得积分10
刚刚
wanglulai发布了新的文献求助10
1秒前
1秒前
黑夜做着白日梦完成签到,获得积分0
1秒前
米九发布了新的文献求助10
1秒前
大个应助兜兜玲儿采纳,获得10
2秒前
azw完成签到,获得积分10
2秒前
荀煜祺完成签到,获得积分10
2秒前
科研通AI2S应助看文献的狗采纳,获得10
2秒前
nicoco发布了新的文献求助10
2秒前
3秒前
哭泣的煎饼完成签到 ,获得积分10
3秒前
li完成签到,获得积分10
3秒前
orixero应助亓大大采纳,获得20
3秒前
3秒前
高兴的海豚完成签到,获得积分10
3秒前
suibianba应助风趣的小鸽子采纳,获得10
4秒前
上善若水完成签到 ,获得积分10
5秒前
Dong完成签到,获得积分10
5秒前
好好学习发布了新的文献求助10
5秒前
浣熊小呆完成签到,获得积分10
5秒前
xinlei2023完成签到,获得积分10
6秒前
993xd完成签到 ,获得积分10
7秒前
绵绵冰完成签到 ,获得积分10
7秒前
8秒前
kosmos完成签到,获得积分10
8秒前
8秒前
小小完成签到,获得积分20
9秒前
9秒前
兜兜玲儿完成签到,获得积分10
9秒前
猪变成了蛾子完成签到,获得积分20
10秒前
10秒前
36456657应助从南到北采纳,获得10
10秒前
10秒前
10秒前
10秒前
舒心如凡完成签到,获得积分10
10秒前
hhh完成签到,获得积分10
13秒前
NN大可爱发布了新的文献求助10
13秒前
桐桐应助jgpiao采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3596869
求助须知:如何正确求助?哪些是违规求助? 3164214
关于积分的说明 9547912
捐赠科研通 2870671
什么是DOI,文献DOI怎么找? 1576432
邀请新用户注册赠送积分活动 740703
科研通“疑难数据库(出版商)”最低求助积分说明 724340